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Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.

—George Forsythe, “What to do till the computer scientist comes.” (1968)

Algorithms play the central role both in the science and practice of computing.
Recognition of this fact has led to the appearance of a considerable number

of textbooks on the subject. By and large, they follow one of two alternatives
in presenting algorithms. One classifies algorithms according to a problem type.
Such a book would have separate chapters on algorithms for sorting, searching,
graphs, and so on. The advantage of this approach is that it allows an immediate
comparison of, say, the efficiency of different algorithms for the same problem.
The drawback of this approach is that it emphasizes problem types at the expense
of algorithm design techniques.

The second alternative organizes the presentation around algorithm design
techniques. In this organization, algorithms from different areas of computing are
grouped together if they have the same design approach. I share the belief of many
(e.g., [BaY95]) that this organization is more appropriate for a basic course on the
design and analysis of algorithms. There are three principal reasons for emphasis
on algorithm design techniques. First, these techniques provide a student with
tools for designing algorithms for new problems. This makes learning algorithm
design techniques a very valuable endeavor from a practical standpoint. Second,
they seek to classify multitudes of known algorithms according to an underlying
design idea. Learning to see such commonality among algorithms from different
application areas should be a major goal of computer science education. After all,
every science considers classification of its principal subject as a major if not the
central point of its discipline. Third, in my opinion, algorithm design techniques
have utility as general problem solving strategies, applicable to problems beyond
computing.

xix
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Unfortunately, the traditional classification of algorithm design techniques
has several serious shortcomings, from both theoretical and educational points
of view. The most significant of these shortcomings is the failure to classify many
important algorithms. This limitation has forced the authors of other textbooks
to depart from the design technique organization and to include chapters dealing
with specific problem types. Such a switch leads to a loss of course coherence and
almost unavoidably creates a confusion in students’ minds.

New taxonomy of algorithm design techniques

My frustration with the shortcomings of the traditional classification of algorithm
design techniques has motivated me to develop a new taxonomy of them [Lev99],
which is the basis of this book. Here are the principal advantages of the new
taxonomy:

The new taxonomy is more comprehensive than the traditional one. It includes
several strategies—brute-force, decrease-and-conquer, transform-and-con-
quer, space and time trade-offs, and iterative improvement—that are rarely
if ever recognized as important design paradigms.
The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule—to name a few) that the traditional taxonomy cannot
classify. As a result, the new taxonomy makes it possible to present the stan-
dard body of classic algorithms in a unified and coherent fashion.
It naturally accommodates the existence of important varieties of several
design techniques. For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.
It is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design techniques as general problem solving strategies

Most applications of the design techniques in the book are to classic problems of
computer science. (The only innovation here is an inclusion of some material on
numerical algorithms, which are covered within the same general framework.)
But these design techniques can be considered general problem solving tools,
whose applications are not limited to traditional computing and mathematical
problems. Two factors make this point particularly important. First, more and
more computing applications go beyond the traditional domain, and there are
reasons to believe that this trend will strengthen in the future. Second, developing
students’ problem solving skills has come to be recognized as a major goal of
college education. Among all the courses in a computer science curriculum, a
course on the design and analysis of algorithms is uniquely suitable for this task
because it can offer a student specific strategies for solving problems.

I am not proposing that a course on the design and analysis of algorithms
should become a course on general problem solving. But I do believe that the
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unique opportunity provided by studying the design and analysis of algorithms
should not be missed. Toward this goal, the book includes applications to puzzles
and puzzle-like games. Although using puzzles in teaching algorithms is certainly
not a new idea, the book tries to do this systematically by going well beyond a few
standard examples.

Textbook pedagogy

My goal was to write a text that would not trivialize the subject but would still be
readable by most students on their own. Here are some of the things done toward
this objective.

Sharing the opinion of George Forsythe expressed in the epigraph, I have
sought to stress major ideas underlying the design and analysis of algorithms.
In choosing specific algorithms to illustrate these ideas, I limited the number of
covered algorithms to those that demonstrate an underlying design technique
or an analysis method most clearly. Fortunately, most classic algorithms satisfy
this criterion.
In Chapter 2, which is devoted to efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.
The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.
Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.
The book contains over 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. More difficult problems—there are not many of them—
are marked by special symbols in the Instructor’s Manual. (Because marking
problems as difficult may discourage some students from trying to tackle them,
problems are not marked in the book itself.) Puzzles, games, and puzzle-like
questions are marked in the exercises with a special icon.
The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual, available
to qualified adopters through Pearson’s Instructor Resource Center. (Please
contact your local Pearson sales representative or go to www.pearsonhighered
.com/irc to access this material.) Slides in PowerPoint are available to all
readers of this book via anonymous ftp at the CS Support site: http://cssupport
.pearsoncmg.com/.

www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
http://cssupport.pearsoncmg.com/
http://cssupport.pearsoncmg.com/
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Changes for the third edition

There are a few changes in the third edition. The most important is the new order of
the chapters on decrease-and-conquer and divide-and-conquer. There are several
advantages in introducing decrease-and-conquer before divide-and-conquer:

Decrease-and-conquer is a simpler strategy than divide-and-conquer.
Decrease-and-conquer is applicable to more problems than divide-and-con-
quer.
The new order makes it possible to discuss insertion sort before mergesort
and quicksort.
The idea of array partitioning is now introduced in conjunction with the
selection problem. I took advantage of an opportunity to do this via the one-
directional scan employed by Lomuto’s algorithm, leaving the two-directional
scan used by Hoare’s partitioning to a later discussion in conjunction with
quicksort.
Binary search is now considered in the section devoted to decrease-by-a-
constant-factor algorithms, where it belongs.

The second important change is restructuring of Chapter 8 on dynamic pro-
gramming. Specifically:

The introductory section is completely new. It contains three basic examples
that provide a much better introduction to this important technique than
computing a binomial coefficient, the example used in the first two editions.
All the exercises for Section 8.1 are new as well; they include well-known
applications not available in the previous editions.
I also changed the order of the other sections in this chapter to get a smoother
progression from the simpler applications to the more advanced ones.

The other changes include the following. More applications of the algorithms
discussed are included. The section on the graph-traversal algorithms is moved
from the decrease-and-conquer chapter to the brute-force and exhaustive-search
chapter, where it fits better, in my opinion. The Gray code algorithm is added to the
section dealing with algorithms for generating combinatorial objects. The divide-
and-conquer algorithm for the closest-pair problem is discussed in more detail.
Updates include the section on algorithm visualization, approximation algorithms
for the traveling salesman problem, and, of course, the bibliography.

I also added about 70 new problems to the exercises. Some of them are algo-
rithmic puzzles and questions asked during job interviews.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.
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Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Section 2.2, 11.4, and 12.4), and to a very
limited degree; if students lack calculus as an assured part of their background, the
relevant portions of these three sections can be omitted without hindering their
understanding of the rest of the material.

Use in the curriculum

The book can serve as a textbook for a basic course on design and analysis of
algorithms organized around algorithm design techniques. It might contain slightly
more material than can be covered in a typical one-semester course. By and large,
portions of Chapters 3 through 12 can be skipped without the danger of making
later parts of the book incomprehensible to the reader. Any portion of the book
can be assigned for self-study. In particular, Sections 2.6 and 2.7 on empirical
analysis and algorithm visualization, respectively, can be assigned in conjunction
with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture Topic Sections

1 Introduction 1.1–1.3
2, 3 Analysis framework; O, �, � notations 2.1, 2.2
4 Mathematical analysis of nonrecursive algorithms 2.3
5, 6 Mathematical analysis of recursive algorithms 2.4, 2.5 (+ App. B)
7 Brute-force algorithms 3.1, 3.2 (+ 3.3)
8 Exhaustive search 3.4
9 Depth-first search and breadth-first search 3.5

10, 11 Decrease-by-one: insertion sort, topological sorting 4.1, 4.2
12 Binary search and other decrease-by-a-constant-

factor algorithms
4.4

13 Variable-size-decrease algorithms 4.5
14, 15 Divide-and-conquer: mergesort, quicksort 5.1–5.2
16 Other divide-and-conquer examples 5.3 or 5.4 or 5.5
17–19 Instance simplification: presorting, Gaussian elimi-

nation, balanced search trees
6.1–6.3

20 Representation change: heaps and heapsort or
Horner’s rule and binary exponentiation

6.4 or 6.5

21 Problem reduction 6.6
22–24 Space-time trade-offs: string matching, hashing, B-

trees
7.2–7.4

25–27 Dynamic programming algorithms 3 from 8.1–8.4
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28–30 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s,
Huffman’s

9.1–9.4

31–33 Iterative improvement algorithms 3 from 10.1–10.4
34 Lower-bound arguments 11.1
35 Decision trees 11.2
36 P, NP, and NP-complete problems 11.3
37 Numerical algorithms 11.4 (+ 12.4)
38 Backtracking 12.1
39 Branch-and-bound 12.2
40 Approximation algorithms for NP-hard problems 12.3
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1
Introduction

Two ideas lie gleaming on the jeweler’s velvet. The first is the calculus, the
second, the algorithm. The calculus and the rich body of mathematical
analysis to which it gave rise made modern science possible; but it has been
the algorithm that has made possible the modern world.

—David Berlinski, The Advent of the Algorithm, 2000

Why do you need to study algorithms? If you are going to be a computer
professional, there are both practical and theoretical reasons to study algo-

rithms. From a practical standpoint, you have to know a standard set of important
algorithms from different areas of computing; in addition, you should be able to
design new algorithms and analyze their efficiency. From the theoretical stand-
point, the study of algorithms, sometimes called algorithmics, has come to be
recognized as the cornerstone of computer science. David Harel, in his delightful
book pointedly titled Algorithmics: the Spirit of Computing, put it as follows:

Algorithmics is more than a branch of computer science. It is the core of
computer science, and, in all fairness, can be said to be relevant to most of
science, business, and technology. [Har92, p. 6]

But even if you are not a student in a computing-related program, there are
compelling reasons to study algorithms. To put it bluntly, computer programs
would not exist without algorithms. And with computer applications becoming
indispensable in almost all aspects of our professional and personal lives, studying
algorithms becomes a necessity for more and more people.

Another reason for studying algorithms is their usefulness in developing an-
alytical skills. After all, algorithms can be seen as special kinds of solutions to
problems—not just answers but precisely defined procedures for getting answers.
Consequently, specific algorithm design techniques can be interpreted as problem-
solving strategies that can be useful regardless of whether a computer is involved.
Of course, the precision inherently imposed by algorithmic thinking limits the
kinds of problems that can be solved with an algorithm. You will not find, for
example, an algorithm for living a happy life or becoming rich and famous. On

1



2 Introduction

the other hand, this required precision has an important educational advantage.
Donald Knuth, one of the most prominent computer scientists in the history of
algorithmics, put it as follows:

A person well-trained in computer science knows how to deal with algorithms:
how to construct them, manipulate them, understand them, analyze them.
This knowledge is preparation for much more than writing good computer
programs; it is a general-purpose mental tool that will be a definite aid to
the understanding of other subjects, whether they be chemistry, linguistics,
or music, etc. The reason for this may be understood in the following way:
It has often been said that a person does not really understand something
until after teaching it to someone else. Actually, a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm . . . An attempt to formalize things as algorithms leads to
a much deeper understanding than if we simply try to comprehend things in
the traditional way. [Knu96, p. 9]

We take up the notion of algorithm in Section 1.1. As examples, we use three
algorithms for the same problem: computing the greatest common divisor. There
are several reasons for this choice. First, it deals with a problem familiar to ev-
erybody from their middle-school days. Second, it makes the important point that
the same problem can often be solved by several algorithms. Quite typically, these
algorithms differ in their idea, level of sophistication, and efficiency. Third, one of
these algorithms deserves to be introduced first, both because of its age—it ap-
peared in Euclid’s famous treatise more than two thousand years ago—and its
enduring power and importance. Finally, investigation of these three algorithms
leads to some general observations about several important properties of algo-
rithms in general.

Section 1.2 deals with algorithmic problem solving. There we discuss several
important issues related to the design and analysis of algorithms. The different
aspects of algorithmic problem solving range from analysis of the problem and the
means of expressing an algorithm to establishing its correctness and analyzing its
efficiency. The section does not contain a magic recipe for designing an algorithm
for an arbitrary problem. It is a well-established fact that such a recipe does not
exist. Still, the material of Section 1.2 should be useful for organizing your work
on designing and analyzing algorithms.

Section 1.3 is devoted to a few problem types that have proven to be partic-
ularly important to the study of algorithms and their application. In fact, there
are textbooks (e.g., [Sed11]) organized around such problem types. I hold the
view—shared by many others—that an organization based on algorithm design
techniques is superior. In any case, it is very important to be aware of the princi-
pal problem types. Not only are they the most commonly encountered problem
types in real-life applications, they are used throughout the book to demonstrate
particular algorithm design techniques.

Section 1.4 contains a review of fundamental data structures. It is meant to
serve as a reference rather than a deliberate discussion of this topic. If you need
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a more detailed exposition, there is a wealth of good books on the subject, most
of them tailored to a particular programming language.

1.1 What Is an Algorithm?

Although there is no universally agreed-on wording to describe this notion, there
is general agreement about what the concept means:

An algorithm is a sequence of unambiguous instructions for solving a
problem, i.e., for obtaining a required output for any legitimate input in
a finite amount of time.

This definition can be illustrated by a simple diagram (Figure 1.1).
The reference to “instructions” in the definition implies that there is some-

thing or someone capable of understanding and following the instructions given.
We call this a “computer,” keeping in mind that before the electronic computer
was invented, the word “computer” meant a human being involved in perform-
ing numeric calculations. Nowadays, of course, “computers” are those ubiquitous
electronic devices that have become indispensable in almost everything we do.
Note, however, that although the majority of algorithms are indeed intended for
eventual computer implementation, the notion of algorithm does not depend on
such an assumption.

As examples illustrating the notion of the algorithm, we consider in this
section three methods for solving the same problem: computing the greatest
common divisor of two integers. These examples will help us to illustrate several
important points:

The nonambiguity requirement for each step of an algorithm cannot be com-
promised.
The range of inputs for which an algorithm works has to be specified carefully.
The same algorithm can be represented in several different ways.
There may exist several algorithms for solving the same problem.

problem

algorithm

input output"computer"

FIGURE 1.1 The notion of the algorithm.
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Algorithms for the same problem can be based on very different ideas and
can solve the problem with dramatically different speeds.

Recall that the greatest common divisor of two nonnegative, not-both-zero
integers m and n, denoted gcd(m, n), is defined as the largest integer that divides
both m and n evenly, i.e., with a remainder of zero. Euclid of Alexandria (third
century b.c.) outlined an algorithm for solving this problem in one of the volumes
of his Elements most famous for its systematic exposition of geometry. In modern
terms, Euclid’s algorithm is based on applying repeatedly the equality

gcd(m, n) = gcd(n, m mod n),

where m mod n is the remainder of the division of m by n, until m mod n is equal
to 0. Since gcd(m, 0) = m (why?), the last value of m is also the greatest common
divisor of the initial m and n.

For example, gcd(60, 24) can be computed as follows:

gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12.

(If you are not impressed by this algorithm, try finding the greatest common divisor
of larger numbers, such as those in Problem 6 in this section’s exercises.)

Here is a more structured description of this algorithm:

Euclid’s algorithm for computing gcd(m, n)

Step 1 If n = 0, return the value of m as the answer and stop; otherwise,
proceed to Step 2.

Step 2 Divide m by n and assign the value of the remainder to r .
Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Alternatively, we can express the same algorithm in pseudocode:

ALGORITHM Euclid(m, n)

//Computes gcd(m, n) by Euclid’s algorithm
//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n �= 0 do
r ← m mod n

m ← n

n ← r

return m

How do we know that Euclid’s algorithm eventually comes to a stop? This
follows from the observation that the second integer of the pair gets smaller with
each iteration and it cannot become negative. Indeed, the new value of n on the
next iteration is m mod n, which is always smaller than n (why?). Hence, the value
of the second integer eventually becomes 0, and the algorithm stops.
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Just as with many other problems, there are several algorithms for computing
the greatest common divisor. Let us look at the other two methods for this prob-
lem. The first is simply based on the definition of the greatest common divisor of
m and n as the largest integer that divides both numbers evenly. Obviously, such
a common divisor cannot be greater than the smaller of these numbers, which we
will denote by t = min{m, n}. So we can start by checking whether t divides both
m and n: if it does, t is the answer; if it does not, we simply decrease t by 1 and
try again. (How do we know that the process will eventually stop?) For example,
for numbers 60 and 24, the algorithm will try first 24, then 23, and so on, until it
reaches 12, where it stops.

Consecutive integer checking algorithm for computing gcd(m, n)

Step 1 Assign the value of min{m, n} to t.

Step 2 Divide m by t. If the remainder of this division is 0, go to Step 3;
otherwise, go to Step 4.

Step 3 Divide n by t. If the remainder of this division is 0, return the value of
t as the answer and stop; otherwise, proceed to Step 4.

Step 4 Decrease the value of t by 1. Go to Step 2.

Note that unlike Euclid’s algorithm, this algorithm, in the form presented,
does not work correctly when one of its input numbers is zero. This example
illustrates why it is so important to specify the set of an algorithm’s inputs explicitly
and carefully.

The third procedure for finding the greatest common divisor should be famil-
iar to you from middle school.

Middle-school procedure for computing gcd(m, n)

Step 1 Find the prime factors of m.
Step 2 Find the prime factors of n.
Step 3 Identify all the common factors in the two prime expansions found in

Step 1 and Step 2. (If p is a common factor occurring pm and pn times
in m and n, respectively, it should be repeated min{pm, pn} times.)

Step 4 Compute the product of all the common factors and return it as the
greatest common divisor of the numbers given.

Thus, for the numbers 60 and 24, we get

60 = 2 . 2 . 3 . 5
24 = 2 . 2 . 2 . 3

gcd(60, 24) = 2 . 2 . 3 = 12.

Nostalgia for the days when we learned this method should not prevent us
from noting that the last procedure is much more complex and slower than Euclid’s
algorithm. (We will discuss methods for finding and comparing running times
of algorithms in the next chapter.) In addition to inferior efficiency, the middle-
school procedure does not qualify, in the form presented, as a legitimate algorithm.
Why? Because the prime factorization steps are not defined unambiguously: they
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require a list of prime numbers, and I strongly suspect that your middle-school
math teacher did not explain how to obtain such a list. This is not a matter
of unnecessary nitpicking. Unless this issue is resolved, we cannot, say, write a
program implementing this procedure. Incidentally, Step 3 is also not defined
clearly enough. Its ambiguity is much easier to rectify than that of the factorization
steps, however. How would you find common elements in two sorted lists?

So, let us introduce a simple algorithm for generating consecutive primes not
exceeding any given integer n > 1. It was probably invented in ancient Greece
and is known as the sieve of Eratosthenes (ca. 200 b.c.). The algorithm starts by
initializing a list of prime candidates with consecutive integers from 2 to n. Then,
on its first iteration, the algorithm eliminates from the list all multiples of 2, i.e., 4,
6, and so on. Then it moves to the next item on the list, which is 3, and eliminates
its multiples. (In this straightforward version, there is an overhead because some
numbers, such as 6, are eliminated more than once.) No pass for number 4 is
needed: since 4 itself and all its multiples are also multiples of 2, they were already
eliminated on a previous pass. The next remaining number on the list, which is
used on the third pass, is 5. The algorithm continues in this fashion until no more
numbers can be eliminated from the list. The remaining integers of the list are the
primes needed.

As an example, consider the application of the algorithm to finding the list of
primes not exceeding n = 25:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 5 7 9 11 13 15 17 19 21 23 25
2 3 5 7 11 13 17 19 23 25
2 3 5 7 11 13 17 19 23

For this example, no more passes are needed because they would eliminate num-
bers already eliminated on previous iterations of the algorithm. The remaining
numbers on the list are the consecutive primes less than or equal to 25.

What is the largest number p whose multiples can still remain on the list
to make further iterations of the algorithm necessary? Before we answer this
question, let us first note that if p is a number whose multiples are being eliminated
on the current pass, then the first multiple we should consider is p . p because all its
smaller multiples 2p, . . . , (p − 1)p have been eliminated on earlier passes through
the list. This observation helps to avoid eliminating the same number more than
once. Obviously, p . p should not be greater than n, and therefore p cannot exceed√

n rounded down (denoted
⌊√

n
⌋

using the so-called floor function). We assume
in the following pseudocode that there is a function available for computing

⌊√
n
⌋

;
alternatively, we could check the inequality p . p ≤ n as the loop continuation
condition there.

ALGORITHM Sieve(n)

//Implements the sieve of Eratosthenes
//Input: A positive integer n > 1
//Output: Array L of all prime numbers less than or equal to n
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for p ← 2 to n do A[p] ← p

for p ← 2 to
⌊√

n
⌋

do //see note before pseudocode
if A[p] �= 0 //p hasn’t been eliminated on previous passes

j ← p ∗ p

while j ≤ n do
A[j ] ← 0 //mark element as eliminated
j ← j + p

//copy the remaining elements of A to array L of the primes
i ← 0
for p ← 2 to n do

if A[p] �= 0
L[i] ← A[p]
i ← i + 1

return L

So now we can incorporate the sieve of Eratosthenes into the middle-school
procedure to get a legitimate algorithm for computing the greatest common divi-
sor of two positive integers. Note that special care needs to be exercised if one or
both input numbers are equal to 1: because mathematicians do not consider 1 to
be a prime number, strictly speaking, the method does not work for such inputs.

Before we leave this section, one more comment is in order. The exam-
ples considered in this section notwithstanding, the majority of algorithms in use
today—even those that are implemented as computer programs—do not deal with
mathematical problems. Look around for algorithms helping us through our daily
routines, both professional and personal. May this ubiquity of algorithms in to-
day’s world strengthen your resolve to learn more about these fascinating engines
of the information age.

Exercises 1.1

1. Do some research on al-Khorezmi (also al-Khwarizmi), the man from whose
name the word “algorithm” is derived. In particular, you should learn what
the origins of the words “algorithm” and “algebra” have in common.

2. Given that the official purpose of the U.S. patent system is the promotion
of the “useful arts,” do you think algorithms are patentable in this country?
Should they be?

3. a. Write down driving directions for going from your school to your home
with the precision required from an algorithm’s description.

b. Write down a recipe for cooking your favorite dish with the precision
required by an algorithm.

4. Design an algorithm for computing
⌊√

n
⌋

for any positive integer n. Besides
assignment and comparison, your algorithm may only use the four basic
arithmetical operations.
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5. Design an algorithm to find all the common elements in two sorted lists of
numbers. For example, for the lists 2, 5, 5, 5 and 2, 2, 3, 5, 5, 7, the output
should be 2, 5, 5. What is the maximum number of comparisons your algorithm
makes if the lengths of the two given lists are m and n, respectively?

6. a. Find gcd(31415, 14142) by applying Euclid’s algorithm.

b. Estimate how many times faster it will be to find gcd(31415, 14142) by
Euclid’s algorithm compared with the algorithm based on checking con-
secutive integers from min{m, n} down to gcd(m, n).

7. Prove the equality gcd(m, n) = gcd(n, m mod n) for every pair of positive
integers m and n.

8. What does Euclid’s algorithm do for a pair of integers in which the first is
smaller than the second? What is the maximum number of times this can
happen during the algorithm’s execution on such an input?

9. a. What is the minimum number of divisions made by Euclid’s algorithm
among all inputs 1 ≤ m, n ≤ 10?

b. What is the maximum number of divisions made by Euclid’s algorithm
among all inputs 1 ≤ m, n ≤ 10?

10. a. Euclid’s algorithm, as presented in Euclid’s treatise, uses subtractions
rather than integer divisions. Write pseudocode for this version of Euclid’s
algorithm.

b. Euclid’s game (see [Bog]) starts with two unequal positive integers on the
board. Two players move in turn. On each move, a player has to write on
the board a positive number equal to the difference of two numbers already
on the board; this number must be new, i.e., different from all the numbers
already on the board. The player who cannot move loses the game. Should
you choose to move first or second in this game?

11. The extended Euclid’s algorithm determines not only the greatest common
divisor d of two positive integers m and n but also integers (not necessarily
positive) x and y, such that mx + ny = d.

a. Look up a description of the extended Euclid’s algorithm (see, e.g., [KnuI,
p. 13]) and implement it in the language of your choice.

b. Modify your program to find integer solutions to the Diophantine equation
ax + by = c with any set of integer coefficients a, b, and c.

12. Locker doors There are n lockers in a hallway, numbered sequentially from
1 to n. Initially, all the locker doors are closed. You make n passes by the
lockers, each time starting with locker #1. On the ith pass, i = 1, 2, . . . , n, you
toggle the door of every ith locker: if the door is closed, you open it; if it is
open, you close it. After the last pass, which locker doors are open and which
are closed? How many of them are open?
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1.2 Fundamentals of Algorithmic Problem Solving

Let us start by reiterating an important point made in the introduction to this
chapter:

We can consider algorithms to be procedural solutions to problems.

These solutions are not answers but specific instructions for getting answers. It is
this emphasis on precisely defined constructive procedures that makes computer
science distinct from other disciplines. In particular, this distinguishes it from the-
oretical mathematics, whose practitioners are typically satisfied with just proving
the existence of a solution to a problem and, possibly, investigating the solution’s
properties.

We now list and briefly discuss a sequence of steps one typically goes through
in designing and analyzing an algorithm (Figure 1.2).

Understanding the Problem

From a practical perspective, the first thing you need to do before designing an
algorithm is to understand completely the problem given. Read the problem’s
description carefully and ask questions if you have any doubts about the problem,
do a few small examples by hand, think about special cases, and ask questions
again if needed.

There are a few types of problems that arise in computing applications quite
often. We review them in the next section. If the problem in question is one of
them, you might be able to use a known algorithm for solving it. Of course, it
helps to understand how such an algorithm works and to know its strengths and
weaknesses, especially if you have to choose among several available algorithms.
But often you will not find a readily available algorithm and will have to design
your own. The sequence of steps outlined in this section should help you in this
exciting but not always easy task.

An input to an algorithm specifies an instance of the problem the algorithm
solves. It is very important to specify exactly the set of instances the algorithm
needs to handle. (As an example, recall the variations in the set of instances for
the three greatest common divisor algorithms discussed in the previous section.)
If you fail to do this, your algorithm may work correctly for a majority of inputs
but crash on some “boundary” value. Remember that a correct algorithm is not
one that works most of the time, but one that works correctly for all legitimate
inputs.

Do not skimp on this first step of the algorithmic problem-solving process;
otherwise, you will run the risk of unnecessary rework.

Ascertaining the Capabilities of the Computational Device

Once you completely understand a problem, you need to ascertain the capabilities
of the computational device the algorithm is intended for. The vast majority of
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Understand the problem

Decide on:
computational means,

exact vs. approximate solving,
algorithm design technique

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

FIGURE 1.2 Algorithm design and analysis process.

algorithms in use today are still destined to be programmed for a computer closely
resembling the von Neumann machine—a computer architecture outlined by
the prominent Hungarian-American mathematician John von Neumann (1903–
1957), in collaboration with A. Burks and H. Goldstine, in 1946. The essence of
this architecture is captured by the so-called random-access machine (RAM).
Its central assumption is that instructions are executed one after another, one
operation at a time. Accordingly, algorithms designed to be executed on such
machines are called sequential algorithms.

The central assumption of the RAM model does not hold for some newer
computers that can execute operations concurrently, i.e., in parallel. Algorithms
that take advantage of this capability are called parallel algorithms. Still, studying
the classic techniques for design and analysis of algorithms under the RAM model
remains the cornerstone of algorithmics for the foreseeable future.
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Should you worry about the speed and amount of memory of a computer at
your disposal? If you are designing an algorithm as a scientific exercise, the answer
is a qualified no. As you will see in Section 2.1, most computer scientists prefer to
study algorithms in terms independent of specification parameters for a particular
computer. If you are designing an algorithm as a practical tool, the answer may
depend on a problem you need to solve. Even the “slow” computers of today are
almost unimaginably fast. Consequently, in many situations you need not worry
about a computer being too slow for the task. There are important problems,
however, that are very complex by their nature, or have to process huge volumes
of data, or deal with applications where the time is critical. In such situations,
it is imperative to be aware of the speed and memory available on a particular
computer system.

Choosing between Exact and Approximate Problem Solving

The next principal decision is to choose between solving the problem exactly or
solving it approximately. In the former case, an algorithm is called an exact algo-
rithm; in the latter case, an algorithm is called an approximation algorithm. Why
would one opt for an approximation algorithm? First, there are important prob-
lems that simply cannot be solved exactly for most of their instances; examples
include extracting square roots, solving nonlinear equations, and evaluating def-
inite integrals. Second, available algorithms for solving a problem exactly can be
unacceptably slow because of the problem’s intrinsic complexity. This happens, in
particular, for many problems involving a very large number of choices; you will
see examples of such difficult problems in Chapters 3, 11, and 12. Third, an ap-
proximation algorithm can be a part of a more sophisticated algorithm that solves
a problem exactly.

Algorithm Design Techniques

Now, with all the components of the algorithmic problem solving in place, how do
you design an algorithm to solve a given problem? This is the main question this
book seeks to answer by teaching you several general design techniques.

What is an algorithm design technique?

An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

Check this book’s table of contents and you will see that a majority of its
chapters are devoted to individual design techniques. They distill a few key ideas
that have proven to be useful in designing algorithms. Learning these techniques
is of utmost importance for the following reasons.

First, they provide guidance for designing algorithms for new problems, i.e.,
problems for which there is no known satisfactory algorithm. Therefore—to use
the language of a famous proverb—learning such techniques is akin to learning
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to fish as opposed to being given a fish caught by somebody else. It is not true, of
course, that each of these general techniques will be necessarily applicable to every
problem you may encounter. But taken together, they do constitute a powerful
collection of tools that you will find quite handy in your studies and work.

Second, algorithms are the cornerstone of computer science. Every science is
interested in classifying its principal subject, and computer science is no exception.
Algorithm design techniques make it possible to classify algorithms according
to an underlying design idea; therefore, they can serve as a natural way to both
categorize and study algorithms.

Designing an Algorithm and Data Structures

While the algorithm design techniques do provide a powerful set of general ap-
proaches to algorithmic problem solving, designing an algorithm for a particular
problem may still be a challenging task. Some design techniques can be simply
inapplicable to the problem in question. Sometimes, several techniques need to
be combined, and there are algorithms that are hard to pinpoint as applications
of the known design techniques. Even when a particular design technique is ap-
plicable, getting an algorithm often requires a nontrivial ingenuity on the part of
the algorithm designer. With practice, both tasks—choosing among the general
techniques and applying them—get easier, but they are rarely easy.

Of course, one should pay close attention to choosing data structures appro-
priate for the operations performed by the algorithm. For example, the sieve of
Eratosthenes introduced in Section 1.1 would run longer if we used a linked list
instead of an array in its implementation (why?). Also note that some of the al-
gorithm design techniques discussed in Chapters 6 and 7 depend intimately on
structuring or restructuring data specifying a problem’s instance. Many years ago,
an influential textbook proclaimed the fundamental importance of both algo-
rithms and data structures for computer programming by its very title: Algorithms
+ Data Structures = Programs [Wir76]. In the new world of object-oriented pro-
gramming, data structures remain crucially important for both design and analysis
of algorithms. We review basic data structures in Section 1.4.

Methods of Specifying an Algorithm

Once you have designed an algorithm, you need to specify it in some fashion. In
Section 1.1, to give you an example, Euclid’s algorithm is described in words (in a
free and also a step-by-step form) and in pseudocode. These are the two options
that are most widely used nowadays for specifying algorithms.

Using a natural language has an obvious appeal; however, the inherent ambi-
guity of any natural language makes a succinct and clear description of algorithms
surprisingly difficult. Nevertheless, being able to do this is an important skill that
you should strive to develop in the process of learning algorithms.

Pseudocode is a mixture of a natural language and programming language-
like constructs. Pseudocode is usually more precise than natural language, and its
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usage often yields more succinct algorithm descriptions. Surprisingly, computer
scientists have never agreed on a single form of pseudocode, leaving textbook
authors with a need to design their own “dialects.” Fortunately, these dialects are
so close to each other that anyone familiar with a modern programming language
should be able to understand them all.

This book’s dialect was selected to cause minimal difficulty for a reader. For
the sake of simplicity, we omit declarations of variables and use indentation to
show the scope of such statements as for, if, and while. As you saw in the previous
section, we use an arrow “←” for the assignment operation and two slashes “//”
for comments.

In the earlier days of computing, the dominant vehicle for specifying algo-
rithms was a flowchart, a method of expressing an algorithm by a collection of
connected geometric shapes containing descriptions of the algorithm’s steps. This
representation technique has proved to be inconvenient for all but very simple
algorithms; nowadays, it can be found only in old algorithm books.

The state of the art of computing has not yet reached a point where an
algorithm’s description—be it in a natural language or pseudocode—can be fed
into an electronic computer directly. Instead, it needs to be converted into a
computer program written in a particular computer language. We can look at such
a program as yet another way of specifying the algorithm, although it is preferable
to consider it as the algorithm’s implementation.

Proving an Algorithm’s Correctness

Once an algorithm has been specified, you have to prove its correctness. That is,
you have to prove that the algorithm yields a required result for every legitimate
input in a finite amount of time. For example, the correctness of Euclid’s algorithm
for computing the greatest common divisor stems from the correctness of the
equality gcd(m, n) = gcd(n, m mod n) (which, in turn, needs a proof; see Problem
7 in Exercises 1.1), the simple observation that the second integer gets smaller on
every iteration of the algorithm, and the fact that the algorithm stops when the
second integer becomes 0.

For some algorithms, a proof of correctness is quite easy; for others, it can be
quite complex. A common technique for proving correctness is to use mathemati-
cal induction because an algorithm’s iterations provide a natural sequence of steps
needed for such proofs. It might be worth mentioning that although tracing the
algorithm’s performance for a few specific inputs can be a very worthwhile activ-
ity, it cannot prove the algorithm’s correctness conclusively. But in order to show
that an algorithm is incorrect, you need just one instance of its input for which the
algorithm fails.

The notion of correctness for approximation algorithms is less straightforward
than it is for exact algorithms. For an approximation algorithm, we usually would
like to be able to show that the error produced by the algorithm does not exceed
a predefined limit. You can find examples of such investigations in Chapter 12.
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Analyzing an Algorithm

We usually want our algorithms to possess several qualities. After correctness,
by far the most important is efficiency. In fact, there are two kinds of algorithm
efficiency: time efficiency, indicating how fast the algorithm runs, and space ef-
ficiency, indicating how much extra memory it uses. A general framework and
specific techniques for analyzing an algorithm’s efficiency appear in Chapter 2.

Another desirable characteristic of an algorithm is simplicity. Unlike effi-
ciency, which can be precisely defined and investigated with mathematical rigor,
simplicity, like beauty, is to a considerable degree in the eye of the beholder. For
example, most people would agree that Euclid’s algorithm is simpler than the
middle-school procedure for computing gcd(m, n), but it is not clear whether Eu-
clid’s algorithm is simpler than the consecutive integer checking algorithm. Still,
simplicity is an important algorithm characteristic to strive for. Why? Because sim-
pler algorithms are easier to understand and easier to program; consequently, the
resulting programs usually contain fewer bugs. There is also the undeniable aes-
thetic appeal of simplicity. Sometimes simpler algorithms are also more efficient
than more complicated alternatives. Unfortunately, it is not always true, in which
case a judicious compromise needs to be made.

Yet another desirable characteristic of an algorithm is generality. There are,
in fact, two issues here: generality of the problem the algorithm solves and the
set of inputs it accepts. On the first issue, note that it is sometimes easier to
design an algorithm for a problem posed in more general terms. Consider, for
example, the problem of determining whether two integers are relatively prime,
i.e., whether their only common divisor is equal to 1. It is easier to design an
algorithm for a more general problem of computing the greatest common divisor
of two integers and, to solve the former problem, check whether the gcd is 1 or
not. There are situations, however, where designing a more general algorithm is
unnecessary or difficult or even impossible. For example, it is unnecessary to sort
a list of n numbers to find its median, which is its �n/2�th smallest element. To give
another example, the standard formula for roots of a quadratic equation cannot
be generalized to handle polynomials of arbitrary degrees.

As to the set of inputs, your main concern should be designing an algorithm
that can handle a set of inputs that is natural for the problem at hand. For example,
excluding integers equal to 1 as possible inputs for a greatest common divisor
algorithm would be quite unnatural. On the other hand, although the standard
formula for the roots of a quadratic equation holds for complex coefficients, we
would normally not implement it on this level of generality unless this capability
is explicitly required.

If you are not satisfied with the algorithm’s efficiency, simplicity, or generality,
you must return to the drawing board and redesign the algorithm. In fact, even if
your evaluation is positive, it is still worth searching for other algorithmic solutions.
Recall the three different algorithms in the previous section for computing the
greatest common divisor: generally, you should not expect to get the best algorithm
on the first try. At the very least, you should try to fine-tune the algorithm you
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already have. For example, we made several improvements in our implementation
of the sieve of Eratosthenes compared with its initial outline in Section 1.1. (Can
you identify them?) You will do well if you keep in mind the following observation
of Antoine de Saint-Exupéry, the French writer, pilot, and aircraft designer: “A
designer knows he has arrived at perfection not when there is no longer anything
to add, but when there is no longer anything to take away.”1

Coding an Algorithm

Most algorithms are destined to be ultimately implemented as computer pro-
grams. Programming an algorithm presents both a peril and an opportunity. The
peril lies in the possibility of making the transition from an algorithm to a pro-
gram either incorrectly or very inefficiently. Some influential computer scientists
strongly believe that unless the correctness of a computer program is proven
with full mathematical rigor, the program cannot be considered correct. They
have developed special techniques for doing such proofs (see [Gri81]), but the
power of these techniques of formal verification is limited so far to very small
programs.

As a practical matter, the validity of programs is still established by testing.
Testing of computer programs is an art rather than a science, but that does not
mean that there is nothing in it to learn. Look up books devoted to testing
and debugging; even more important, test and debug your program thoroughly
whenever you implement an algorithm.

Also note that throughout the book, we assume that inputs to algorithms
belong to the specified sets and hence require no verification. When implementing
algorithms as programs to be used in actual applications, you should provide such
verifications.

Of course, implementing an algorithm correctly is necessary but not sufficient:
you would not like to diminish your algorithm’s power by an inefficient implemen-
tation. Modern compilers do provide a certain safety net in this regard, especially
when they are used in their code optimization mode. Still, you need to be aware
of such standard tricks as computing a loop’s invariant (an expression that does
not change its value) outside the loop, collecting common subexpressions, replac-
ing expensive operations by cheap ones, and so on. (See [Ker99] and [Ben00] for
a good discussion of code tuning and other issues related to algorithm program-
ming.) Typically, such improvements can speed up a program only by a constant
factor, whereas a better algorithm can make a difference in running time by orders
of magnitude. But once an algorithm is selected, a 10–50% speedup may be worth
an effort.

1. I found this call for design simplicity in an essay collection by Jon Bentley [Ben00]; the essays deal
with a variety of issues in algorithm design and implementation and are justifiably titled Programming
Pearls. I wholeheartedly recommend the writings of both Jon Bentley and Antoine de Saint-Exupéry.
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A working program provides an additional opportunity in allowing an em-
pirical analysis of the underlying algorithm. Such an analysis is based on timing
the program on several inputs and then analyzing the results obtained. We dis-
cuss the advantages and disadvantages of this approach to analyzing algorithms
in Section 2.6.

In conclusion, let us emphasize again the main lesson of the process depicted
in Figure 1.2:

As a rule, a good algorithm is a result of repeated effort and rework.

Even if you have been fortunate enough to get an algorithmic idea that seems
perfect, you should still try to see whether it can be improved.

Actually, this is good news since it makes the ultimate result so much more
enjoyable. (Yes, I did think of naming this book The Joy of Algorithms.) On the
other hand, how does one know when to stop? In the real world, more often than
not a project’s schedule or the impatience of your boss will stop you. And so it
should be: perfection is expensive and in fact not always called for. Designing
an algorithm is an engineering-like activity that calls for compromises among
competing goals under the constraints of available resources, with the designer’s
time being one of the resources.

In the academic world, the question leads to an interesting but usually difficult
investigation of an algorithm’s optimality. Actually, this question is not about the
efficiency of an algorithm but about the complexity of the problem it solves: What
is the minimum amount of effort any algorithm will need to exert to solve the
problem? For some problems, the answer to this question is known. For example,
any algorithm that sorts an array by comparing values of its elements needs about
n log2 n comparisons for some arrays of size n (see Section 11.2). But for many
seemingly easy problems such as integer multiplication, computer scientists do
not yet have a final answer.

Another important issue of algorithmic problem solving is the question of
whether or not every problem can be solved by an algorithm. We are not talking
here about problems that do not have a solution, such as finding real roots of
a quadratic equation with a negative discriminant. For such cases, an output
indicating that the problem does not have a solution is all we can and should
expect from an algorithm. Nor are we talking about ambiguously stated problems.
Even some unambiguous problems that must have a simple yes or no answer are
“undecidable,” i.e., unsolvable by any algorithm. An important example of such
a problem appears in Section 11.3. Fortunately, a vast majority of problems in
practical computing can be solved by an algorithm.

Before leaving this section, let us be sure that you do not have the
misconception—possibly caused by the somewhat mechanical nature of the
diagram of Figure 1.2—that designing an algorithm is a dull activity. There is
nothing further from the truth: inventing (or discovering?) algorithms is a very
creative and rewarding process. This book is designed to convince you that this is
the case.
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Exercises 1.2

1. Old World puzzle A peasant finds himself on a riverbank with a wolf, a goat,
and a head of cabbage. He needs to transport all three to the other side of the
river in his boat. However, the boat has room for only the peasant himself
and one other item (either the wolf, the goat, or the cabbage). In his absence,
the wolf would eat the goat, and the goat would eat the cabbage. Solve this
problem for the peasant or prove it has no solution. (Note: The peasant is a
vegetarian but does not like cabbage and hence can eat neither the goat nor
the cabbage to help him solve the problem. And it goes without saying that
the wolf is a protected species.)

2. New World puzzle There are four people who want to cross a rickety bridge;
they all begin on the same side. You have 17 minutes to get them all across
to the other side. It is night, and they have one flashlight. A maximum of two
people can cross the bridge at one time. Any party that crosses, either one or
two people, must have the flashlight with them. The flashlight must be walked
back and forth; it cannot be thrown, for example. Person 1 takes 1 minute
to cross the bridge, person 2 takes 2 minutes, person 3 takes 5 minutes, and
person 4 takes 10 minutes. A pair must walk together at the rate of the slower
person’s pace. (Note: According to a rumor on the Internet, interviewers at a
well-known software company located near Seattle have given this problem
to interviewees.)

3. Which of the following formulas can be considered an algorithm for comput-
ing the area of a triangle whose side lengths are given positive numbers a, b,
and c?
a. S =√

p(p − a)(p − b)(p − c), where p = (a + b + c)/2

b. S = 1
2bc sin A, where A is the angle between sides b and c

c. S = 1
2aha, where ha is the height to base a

4. Write pseudocode for an algorithm for finding real roots of equation ax2 +
bx + c = 0 for arbitrary real coefficients a, b, and c. (You may assume the
availability of the square root function sqrt (x).)

5. Describe the standard algorithm for finding the binary representation of a
positive decimal integer
a. in English.

b. in pseudocode.

6. Describe the algorithm used by your favorite ATM machine in dispensing
cash. (You may give your description in either English or pseudocode, which-
ever you find more convenient.)

7. a. Can the problem of computing the number π be solved exactly?

b. How many instances does this problem have?

c. Look up an algorithm for this problem on the Internet.
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8. Give an example of a problem other than computing the greatest common
divisor for which you know more than one algorithm. Which of them is
simpler? Which is more efficient?

9. Consider the following algorithm for finding the distance between the two
closest elements in an array of numbers.

ALGORITHM MinDistance(A[0..n − 1])

//Input: Array A[0..n − 1] of numbers
//Output: Minimum distance between two of its elements
dmin ← ∞

for i ← 0 to n − 1 do
for j ← 0 to n − 1 do

if i �= j and |A[i] − A[j ]| < dmin

dmin ← |A[i] − A[j ]|
return dmin

Make as many improvements as you can in this algorithmic solution to the
problem. If you need to, you may change the algorithm altogether; if not,
improve the implementation given.

10. One of the most influential books on problem solving, titled How To Solve
It [Pol57], was written by the Hungarian-American mathematician George
Pólya (1887–1985). Pólya summarized his ideas in a four-point summary. Find
this summary on the Internet or, better yet, in his book, and compare it with
the plan outlined in Section 1.2. What do they have in common? How are they
different?

1.3 Important Problem Types

In the limitless sea of problems one encounters in computing, there are a few
areas that have attracted particular attention from researchers. By and large,
their interest has been driven either by the problem’s practical importance or by
some specific characteristics making the problem an interesting research subject;
fortunately, these two motivating forces reinforce each other in most cases.

In this section, we are going to introduce the most important problem types:

Sorting
Searching
String processing
Graph problems
Combinatorial problems
Geometric problems
Numerical problems
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These problems are used in subsequent chapters of the book to illustrate
different algorithm design techniques and methods of algorithm analysis.

Sorting

The sorting problem is to rearrange the items of a given list in nondecreasing
order. Of course, for this problem to be meaningful, the nature of the list items
must allow such an ordering. (Mathematicians would say that there must exist
a relation of total ordering.) As a practical matter, we usually need to sort lists
of numbers, characters from an alphabet, character strings, and, most important,
records similar to those maintained by schools about their students, libraries about
their holdings, and companies about their employees. In the case of records, we
need to choose a piece of information to guide sorting. For example, we can choose
to sort student records in alphabetical order of names or by student number or by
student grade-point average. Such a specially chosen piece of information is called
a key. Computer scientists often talk about sorting a list of keys even when the list’s
items are not records but, say, just integers.

Why would we want a sorted list? To begin with, a sorted list can be a required
output of a task such as ranking Internet search results or ranking students by their
GPA scores. Further, sorting makes many questions about the list easier to answer.
The most important of them is searching: it is why dictionaries, telephone books,
class lists, and so on are sorted. You will see other examples of the usefulness of
list presorting in Section 6.1. In a similar vein, sorting is used as an auxiliary step
in several important algorithms in other areas, e.g., geometric algorithms and data
compression. The greedy approach—an important algorithm design technique
discussed later in the book—requires a sorted input.

By now, computer scientists have discovered dozens of different sorting algo-
rithms. In fact, inventing a new sorting algorithm has been likened to designing
the proverbial mousetrap. And I am happy to report that the hunt for a better
sorting mousetrap continues. This perseverance is admirable in view of the fol-
lowing facts. On the one hand, there are a few good sorting algorithms that sort
an arbitrary array of size n using about n log2 n comparisons. On the other hand,
no algorithm that sorts by key comparisons (as opposed to, say, comparing small
pieces of keys) can do substantially better than that.

There is a reason for this embarrassment of algorithmic riches in the land
of sorting. Although some algorithms are indeed better than others, there is no
algorithm that would be the best solution in all situations. Some of the algorithms
are simple but relatively slow, while others are faster but more complex; some
work better on randomly ordered inputs, while others do better on almost-sorted
lists; some are suitable only for lists residing in the fast memory, while others can
be adapted for sorting large files stored on a disk; and so on.

Two properties of sorting algorithms deserve special mention. A sorting algo-
rithm is called stable if it preserves the relative order of any two equal elements in
its input. In other words, if an input list contains two equal elements in positions
i and j where i < j, then in the sorted list they have to be in positions i′ and j ′,
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respectively, such that i′ < j ′. This property can be desirable if, for example, we
have a list of students sorted alphabetically and we want to sort it according to
student GPA: a stable algorithm will yield a list in which students with the same
GPA will still be sorted alphabetically. Generally speaking, algorithms that can
exchange keys located far apart are not stable, but they usually work faster; you
will see how this general comment applies to important sorting algorithms later
in the book.

The second notable feature of a sorting algorithm is the amount of extra
memory the algorithm requires. An algorithm is said to be in-place if it does
not require extra memory, except, possibly, for a few memory units. There are
important sorting algorithms that are in-place and those that are not.

Searching

The searching problem deals with finding a given value, called a search key, in a
given set (or a multiset, which permits several elements to have the same value).
There are plenty of searching algorithms to choose from. They range from the
straightforward sequential search to a spectacularly efficient but limited binary
search and algorithms based on representing the underlying set in a different form
more conducive to searching. The latter algorithms are of particular importance
for real-world applications because they are indispensable for storing and retriev-
ing information from large databases.

For searching, too, there is no single algorithm that fits all situations best.
Some algorithms work faster than others but require more memory; some are
very fast but applicable only to sorted arrays; and so on. Unlike with sorting
algorithms, there is no stability problem, but different issues arise. Specifically,
in applications where the underlying data may change frequently relative to the
number of searches, searching has to be considered in conjunction with two other
operations: an addition to and deletion from the data set of an item. In such
situations, data structures and algorithms should be chosen to strike a balance
among the requirements of each operation. Also, organizing very large data sets
for efficient searching poses special challenges with important implications for
real-world applications.

String Processing

In recent decades, the rapid proliferation of applications dealing with nonnumer-
ical data has intensified the interest of researchers and computing practitioners in
string-handling algorithms. A string is a sequence of characters from an alphabet.
Strings of particular interest are text strings, which comprise letters, numbers, and
special characters; bit strings, which comprise zeros and ones; and gene sequences,
which can be modeled by strings of characters from the four-character alphabet {A,
C, G, T}. It should be pointed out, however, that string-processing algorithms have
been important for computer science for a long time in conjunction with computer
languages and compiling issues.
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One particular problem—that of searching for a given word in a text—has
attracted special attention from researchers. They call it string matching. Several
algorithms that exploit the special nature of this type of searching have been
invented. We introduce one very simple algorithm in Chapter 3 and discuss two
algorithms based on a remarkable idea by R. Boyer and J. Moore in Chapter 7.

Graph Problems

One of the oldest and most interesting areas in algorithmics is graph algorithms.
Informally, a graph can be thought of as a collection of points called vertices, some
of which are connected by line segments called edges. (A more formal definition
is given in the next section.) Graphs are an interesting subject to study, for both
theoretical and practical reasons. Graphs can be used for modeling a wide variety
of applications, including transportation, communication, social and economic
networks, project scheduling, and games. Studying different technical and social
aspects of the Internet in particular is one of the active areas of current research
involving computer scientists, economists, and social scientists (see, e.g., [Eas10]).

Basic graph algorithms include graph-traversal algorithms (how can one reach
all the points in a network?), shortest-path algorithms (what is the best route be-
tween two cities?), and topological sorting for graphs with directed edges (is a set
of courses with their prerequisites consistent or self-contradictory?). Fortunately,
these algorithms can be considered illustrations of general design techniques; ac-
cordingly, you will find them in corresponding chapters of the book.

Some graph problems are computationally very hard; the most well-known
examples are the traveling salesman problem and the graph-coloring problem.
The traveling salesman problem (TSP) is the problem of finding the shortest tour
through n cities that visits every city exactly once. In addition to obvious appli-
cations involving route planning, it arises in such modern applications as circuit
board and VLSI chip fabrication, X-ray crystallography, and genetic engineer-
ing. The graph-coloring problem seeks to assign the smallest number of colors to
the vertices of a graph so that no two adjacent vertices are the same color. This
problem arises in several applications, such as event scheduling: if the events are
represented by vertices that are connected by an edge if and only if the correspond-
ing events cannot be scheduled at the same time, a solution to the graph-coloring
problem yields an optimal schedule.

Combinatorial Problems

From a more abstract perspective, the traveling salesman problem and the graph-
coloring problem are examples of combinatorial problems. These are problems
that ask, explicitly or implicitly, to find a combinatorial object—such as a permu-
tation, a combination, or a subset—that satisfies certain constraints. A desired
combinatorial object may also be required to have some additional property such
as a maximum value or a minimum cost.
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Generally speaking, combinatorial problems are the most difficult problems in
computing, from both a theoretical and practical standpoint. Their difficulty stems
from the following facts. First, the number of combinatorial objects typically grows
extremely fast with a problem’s size, reaching unimaginable magnitudes even
for moderate-sized instances. Second, there are no known algorithms for solving
most such problems exactly in an acceptable amount of time. Moreover, most
computer scientists believe that such algorithms do not exist. This conjecture has
been neither proved nor disproved, and it remains the most important unresolved
issue in theoretical computer science. We discuss this topic in more detail in
Section 11.3.

Some combinatorial problems can be solved by efficient algorithms, but they
should be considered fortunate exceptions to the rule. The shortest-path problem
mentioned earlier is among such exceptions.

Geometric Problems

Geometric algorithms deal with geometric objects such as points, lines, and poly-
gons. The ancient Greeks were very much interested in developing procedures
(they did not call them algorithms, of course) for solving a variety of geometric
problems, including problems of constructing simple geometric shapes—triangles,
circles, and so on—with an unmarked ruler and a compass. Then, for about 2000
years, intense interest in geometric algorithms disappeared, to be resurrected in
the age of computers—no more rulers and compasses, just bits, bytes, and good old
human ingenuity. Of course, today people are interested in geometric algorithms
with quite different applications in mind, such as computer graphics, robotics, and
tomography.

We will discuss algorithms for only two classic problems of computational
geometry: the closest-pair problem and the convex-hull problem. The closest-pair
problem is self-explanatory: given n points in the plane, find the closest pair among
them. The convex-hull problem asks to find the smallest convex polygon that
would include all the points of a given set. If you are interested in other geometric
algorithms, you will find a wealth of material in such specialized monographs as
[deB10], [ORo98], and [Pre85].

Numerical Problems

Numerical problems, another large special area of applications, are problems
that involve mathematical objects of continuous nature: solving equations and
systems of equations, computing definite integrals, evaluating functions, and so on.
The majority of such mathematical problems can be solved only approximately.
Another principal difficulty stems from the fact that such problems typically
require manipulating real numbers, which can be represented in a computer only
approximately. Moreover, a large number of arithmetic operations performed on
approximately represented numbers can lead to an accumulation of the round-off
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error to a point where it can drastically distort an output produced by a seemingly
sound algorithm.

Many sophisticated algorithms have been developed over the years in this
area, and they continue to play a critical role in many scientific and engineering
applications. But in the last 30 years or so, the computing industry has shifted
its focus to business applications. These new applications require primarily algo-
rithms for information storage, retrieval, transportation through networks, and
presentation to users. As a result of this revolutionary change, numerical analysis
has lost its formerly dominating position in both industry and computer science
programs. Still, it is important for any computer-literate person to have at least a
rudimentary idea about numerical algorithms. We discuss several classical numer-
ical algorithms in Sections 6.2, 11.4, and 12.4.

Exercises 1.3

1. Consider the algorithm for the sorting problem that sorts an array by counting,
for each of its elements, the number of smaller elements and then uses this
information to put the element in its appropriate position in the sorted array:

ALGORITHM ComparisonCountingSort(A[0..n − 1])

//Sorts an array by comparison counting
//Input: Array A[0..n − 1] of orderable values
//Output: Array S[0..n − 1] of A’s elements sorted
// in nondecreasing order
for i ← 0 to n − 1 do

Count[i] ← 0
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do
if A[i] < A[j ]

Count[j ] ← Count[j ] + 1
else Count[i] ← Count[i] + 1

for i ← 0 to n − 1 do
S[Count[i]] ← A[i]

return S

a. Apply this algorithm to sorting the list 60, 35, 81, 98, 14, 47.

b. Is this algorithm stable?

c. Is it in-place?

2. Name the algorithms for the searching problem that you already know. Give
a good succinct description of each algorithm in English. If you know no such
algorithms, use this opportunity to design one.

3. Design a simple algorithm for the string-matching problem.
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4. Königsberg bridges The Königsberg bridge puzzle is universally accepted
as the problem that gave birth to graph theory. It was solved by the great
Swiss-born mathematician Leonhard Euler (1707–1783). The problem asked
whether one could, in a single stroll, cross all seven bridges of the city of
Königsberg exactly once and return to a starting point. Following is a sketch
of the river with its two islands and seven bridges:

a. State the problem as a graph problem.

b. Does this problem have a solution? If you believe it does, draw such a stroll;
if you believe it does not, explain why and indicate the smallest number of
new bridges that would be required to make such a stroll possible.

5. Icosian Game A century after Euler’s discovery (see Problem 4), another
famous puzzle—this one invented by the renowned Irish mathematician Sir
William Hamilton (1805–1865)—was presented to the world under the name
of the Icosian Game. The game’s board was a circular wooden board on which
the following graph was carved:

Find a Hamiltonian circuit—a path that visits all the graph’s vertices exactly
once before returning to the starting vertex—for this graph.

6. Consider the following problem: Design an algorithm to determine the best
route for a subway passenger to take from one designated station to another in
a well-developed subway system similar to those in such cities as Washington,
D.C., and London, UK.
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a. The problem’s statement is somewhat vague, which is typical of real-life
problems. In particular, what reasonable criterion can be used for defining
the “best” route?

b. How would you model this problem by a graph?

7. a. Rephrase the traveling-salesman problem in combinatorial object terms.

b. Rephrase the graph-coloring problem in combinatorial object terms.

8. Consider the following map:

a

b

e

c
d

f

a. Explain how we can use the graph-coloring problem to color the map so
that no two neighboring regions are colored the same.

b. Use your answer to part (a) to color the map with the smallest number of
colors.

9. Design an algorithm for the following problem: Given a set of n points in the
Cartesian plane, determine whether all of them lie on the same circumference.

10. Write a program that reads as its inputs the (x, y) coordinates of the endpoints
of two line segments P1Q1 and P2Q2 and determines whether the segments
have a common point.

1.4 Fundamental Data Structures

Since the vast majority of algorithms of interest operate on data, particular ways of
organizing data play a critical role in the design and analysis of algorithms. A data
structure can be defined as a particular scheme of organizing related data items.
The nature of the data items is dictated by the problem at hand; they can range
from elementary data types (e.g., integers or characters) to data structures (e.g., a
one-dimensional array of one-dimensional arrays is often used for implementing
matrices). There are a few data structures that have proved to be particularly
important for computer algorithms. Since you are undoubtedly familiar with most
if not all of them, just a quick review is provided here.

Linear Data Structures

The two most important elementary data structures are the array and the linked
list. A (one-dimensional) array is a sequence of n items of the same data type that
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are stored contiguously in computer memory and made accessible by specifying a
value of the array’s index (Figure 1.3).

In the majority of cases, the index is an integer either between 0 and n − 1
(as shown in Figure 1.3) or between 1 and n. Some computer languages allow an
array index to range between any two integer bounds low and high, and some even
permit nonnumerical indices to specify, for example, data items corresponding to
the 12 months of the year by the month names.

Each and every element of an array can be accessed in the same constant
amount of time regardless of where in the array the element in question is located.
This feature positively distinguishes arrays from linked lists, discussed below.

Arrays are used for implementing a variety of other data structures. Promi-
nent among them is the string, a sequence of characters from an alphabet termi-
nated by a special character indicating the string’s end. Strings composed of zeros
and ones are called binary strings or bit strings. Strings are indispensable for pro-
cessing textual data, defining computer languages and compiling programs written
in them, and studying abstract computational models. Operations we usually per-
form on strings differ from those we typically perform on other arrays (say, arrays
of numbers). They include computing the string length, comparing two strings to
determine which one precedes the other in lexicographic (i.e., alphabetical) or-
der, and concatenating two strings (forming one string from two given strings by
appending the second to the end of the first).

A linked list is a sequence of zero or more elements called nodes, each
containing two kinds of information: some data and one or more links called
pointers to other nodes of the linked list. (A special pointer called “null” is used
to indicate the absence of a node’s successor.) In a singly linked list, each node
except the last one contains a single pointer to the next element (Figure 1.4).

To access a particular node of a linked list, one starts with the list’s first node
and traverses the pointer chain until the particular node is reached. Thus, the time
needed to access an element of a singly linked list, unlike that of an array, depends
on where in the list the element is located. On the positive side, linked lists do

Item [0] Item [1] Item [n–1]

FIGURE 1.3 Array of n elements.

Item 0 Item 1 Item n –1 null

FIGURE 1.4 Singly linked list of n elements.
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Item n–1 nullItem 1Item 0null

FIGURE 1.5 Doubly linked list of n elements.

not require any preliminary reservation of the computer memory, and insertions
and deletions can be made quite efficiently in a linked list by reconnecting a few
appropriate pointers.

We can exploit flexibility of the linked list structure in a variety of ways. For
example, it is often convenient to start a linked list with a special node called the
header. This node may contain information about the linked list itself, such as its
current length; it may also contain, in addition to a pointer to the first element, a
pointer to the linked list’s last element.

Another extension is the structure called the doubly linked list, in which every
node, except the first and the last, contains pointers to both its successor and its
predecessor (Figure 1.5).

The array and linked list are two principal choices in representing a more
abstract data structure called a linear list or simply a list. A list is a finite sequence
of data items, i.e., a collection of data items arranged in a certain linear order. The
basic operations performed on this data structure are searching for, inserting, and
deleting an element.

Two special types of lists, stacks and queues, are particularly important. A
stack is a list in which insertions and deletions can be done only at the end. This
end is called the top because a stack is usually visualized not horizontally but
vertically—akin to a stack of plates whose “operations” it mimics very closely.
As a result, when elements are added to (pushed onto) a stack and deleted from
(popped off) it, the structure operates in a “last-in–first-out” (LIFO) fashion—
exactly like a stack of plates if we can add or remove a plate only from the top.
Stacks have a multitude of applications; in particular, they are indispensable for
implementing recursive algorithms.

A queue, on the other hand, is a list from which elements are deleted from
one end of the structure, called the front (this operation is called dequeue),
and new elements are added to the other end, called the rear (this operation is
called enqueue). Consequently, a queue operates in a “first-in–first-out” (FIFO)
fashion—akin to a queue of customers served by a single teller in a bank. Queues
also have many important applications, including several algorithms for graph
problems.

Many important applications require selection of an item of the highest pri-
ority among a dynamically changing set of candidates. A data structure that seeks
to satisfy the needs of such applications is called a priority queue. A priority
queue is a collection of data items from a totally ordered universe (most often,
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integer or real numbers). The principal operations on a priority queue are find-
ing its largest element, deleting its largest element, and adding a new element.
Of course, a priority queue must be implemented so that the last two operations
yield another priority queue. Straightforward implementations of this data struc-
ture can be based on either an array or a sorted array, but neither of these options
yields the most efficient solution possible. A better implementation of a priority
queue is based on an ingenious data structure called the heap. We discuss heaps
and an important sorting algorithm based on them in Section 6.4.

Graphs

As we mentioned in the previous section, a graph is informally thought of as
a collection of points in the plane called “vertices” or “nodes,” some of them
connected by line segments called “edges” or “arcs.” Formally, a graph G = 〈V, E〉
is defined by a pair of two sets: a finite nonempty set V of items called vertices
and a set E of pairs of these items called edges. If these pairs of vertices are
unordered, i.e., a pair of vertices (u, v) is the same as the pair (v, u), we say that
the vertices u and v are adjacent to each other and that they are connected by the
undirected edge (u, v). We call the vertices u and v endpoints of the edge (u, v)

and say that u and v are incident to this edge; we also say that the edge (u, v) is
incident to its endpoints u and v. A graph G is called undirected if every edge in
it is undirected.

If a pair of vertices (u, v) is not the same as the pair (v, u), we say that the
edge (u, v) is directed from the vertex u, called the edge’s tail, to the vertex v,

called the edge’s head . We also say that the edge (u, v) leaves u and enters v. A
graph whose every edge is directed is called directed . Directed graphs are also
called digraphs.

It is normally convenient to label vertices of a graph or a digraph with letters,
integer numbers, or, if an application calls for it, character strings (Figure 1.6). The
graph depicted in Figure 1.6a has six vertices and seven undirected edges:

V = {a, b, c, d, e, f }, E = {(a, c), (a, d), (b, c), (b, f ), (c, e), (d, e), (e, f )}.
The digraph depicted in Figure 1.6b has six vertices and eight directed edges:

V = {a, b, c, d, e, f }, E = {(a, c), (b, c), (b, f ), (c, e), (d, a), (d, e), (e, c), (e, f )}.

a

d

c

e

b

f

(a)

a

d

c

e

b

f

(b)

FIGURE 1.6 (a) Undirected graph. (b) Digraph.
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Our definition of a graph does not forbid loops, or edges connecting vertices
to themselves. Unless explicitly stated otherwise, we will consider graphs without
loops. Since our definition disallows multiple edges between the same vertices of
an undirected graph, we have the following inequality for the number of edges |E|
possible in an undirected graph with |V | vertices and no loops:

0 ≤ |E| ≤ |V |(|V | − 1)/2.

(We get the largest number of edges in a graph if there is an edge connecting
each of its |V | vertices with all |V | − 1 other vertices. We have to divide product
|V |(|V | − 1) by 2, however, because it includes every edge twice.)

A graph with every pair of its vertices connected by an edge is called complete.
A standard notation for the complete graph with |V | vertices is K|V |. A graph
with relatively few possible edges missing is called dense; a graph with few edges
relative to the number of its vertices is called sparse. Whether we are dealing with
a dense or sparse graph may influence how we choose to represent the graph and,
consequently, the running time of an algorithm being designed or used.

Graph Representations Graphs for computer algorithms are usually repre-
sented in one of two ways: the adjacency matrix and adjacency lists. The adjacency
matrix of a graph with n vertices is an n × n boolean matrix with one row and one
column for each of the graph’s vertices, in which the element in the ith row and
the j th column is equal to 1 if there is an edge from the ith vertex to the j th vertex,
and equal to 0 if there is no such edge. For example, the adjacency matrix for the
graph of Figure 1.6a is given in Figure 1.7a.

Note that the adjacency matrix of an undirected graph is always symmetric,
i.e., A[i, j ] = A[j, i] for every 0 ≤ i, j ≤ n − 1 (why?).

The adjacency lists of a graph or a digraph is a collection of linked lists,
one for each vertex, that contain all the vertices adjacent to the list’s vertex
(i.e., all the vertices connected to it by an edge). Usually, such lists start with a
header identifying a vertex for which the list is compiled. For example, Figure 1.7b
represents the graph in Figure 1.6a via its adjacency lists. To put it another way,
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FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph in Figure 1.6a.
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adjacency lists indicate columns of the adjacency matrix that, for a given vertex,
contain 1’s.

If a graph is sparse, the adjacency list representation may use less space
than the corresponding adjacency matrix despite the extra storage consumed by
pointers of the linked lists; the situation is exactly opposite for dense graphs. In
general, which of the two representations is more convenient depends on the
nature of the problem, on the algorithm used for solving it, and, possibly, on the
type of input graph (sparse or dense).

Weighted Graphs A weighted graph (or weighted digraph) is a graph (or di-
graph) with numbers assigned to its edges. These numbers are called weights or
costs. An interest in such graphs is motivated by numerous real-world applica-
tions, such as finding the shortest path between two points in a transportation or
communication network or the traveling salesman problem mentioned earlier.

Both principal representations of a graph can be easily adopted to accommo-
date weighted graphs. If a weighted graph is represented by its adjacency matrix,
then its element A[i, j ] will simply contain the weight of the edge from the ith to
the j th vertex if there is such an edge and a special symbol, e.g., ∞, if there is no
such edge. Such a matrix is called the weight matrix or cost matrix. This approach
is illustrated in Figure 1.8b for the weighted graph in Figure 1.8a. (For some ap-
plications, it is more convenient to put 0’s on the main diagonal of the adjacency
matrix.) Adjacency lists for a weighted graph have to include in their nodes not
only the name of an adjacent vertex but also the weight of the corresponding edge
(Figure 1.8c).

Paths and Cycles Among the many properties of graphs, two are important for a
great number of applications: connectivity and acyclicity. Both are based on the
notion of a path. A path from vertex u to vertex v of a graph G can be defined as a
sequence of adjacent (connected by an edge) vertices that starts with u and ends
with v. If all vertices of a path are distinct, the path is said to be simple. The length
of a path is the total number of vertices in the vertex sequence defining the path
minus 1, which is the same as the number of edges in the path. For example, a, c,

b, f is a simple path of length 3 from a to f in the graph in Figure 1.6a, whereas
a, c, e, c, b, f is a path (not simple) of length 5 from a to f.
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FIGURE 1.8 (a) Weighted graph. (b) Its weight matrix. (c) Its adjacency lists.
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FIGURE 1.9 Graph that is not connected.

In the case of a directed graph, we are usually interested in directed paths.
A directed path is a sequence of vertices in which every consecutive pair of the
vertices is connected by an edge directed from the vertex listed first to the vertex
listed next. For example, a, c, e, f is a directed path from a to f in the graph in
Figure 1.6b.

A graph is said to be connected if for every pair of its vertices u and v there
is a path from u to v. If we make a model of a connected graph by connecting
some balls representing the graph’s vertices with strings representing the edges,
it will be a single piece. If a graph is not connected, such a model will consist
of several connected pieces that are called connected components of the graph.
Formally, a connected component is a maximal (not expandable by including
another vertex and an edge) connected subgraph2 of a given graph. For example,
the graphs in Figures 1.6a and 1.8a are connected, whereas the graph in Figure 1.9
is not, because there is no path, for example, from a to f. The graph in Figure
1.9 has two connected components with vertices {a, b, c, d, e} and {f, g, h, i},
respectively.

Graphs with several connected components do happen in real-world appli-
cations. A graph representing the Interstate highway system of the United States
would be an example (why?).

It is important to know for many applications whether or not a graph under
consideration has cycles. A cycle is a path of a positive length that starts and ends at
the same vertex and does not traverse the same edge more than once. For example,
f , h, i, g, f is a cycle in the graph in Figure 1.9. A graph with no cycles is said to
be acyclic. We discuss acyclic graphs in the next subsection.

Trees

A tree (more accurately, a free tree) is a connected acyclic graph (Figure 1.10a).
A graph that has no cycles but is not necessarily connected is called a forest: each
of its connected components is a tree (Figure 1.10b).

2. A subgraph of a given graph G = 〈V, E〉 is a graph G′ = 〈V ′, E′〉 such that V ′ ⊆ V and E′ ⊆ E.
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FIGURE 1.10 (a) Tree. (b) Forest.
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FIGURE 1.11 (a) Free tree. (b) Its transformation into a rooted tree.

Trees have several important properties other graphs do not have. In par-
ticular, the number of edges in a tree is always one less than the number of its
vertices:

|E| = |V | − 1.

As the graph in Figure 1.9 demonstrates, this property is necessary but not suffi-
cient for a graph to be a tree. However, for connected graphs it is sufficient and
hence provides a convenient way of checking whether a connected graph has a
cycle.

Rooted Trees Another very important property of trees is the fact that for every
two vertices in a tree, there always exists exactly one simple path from one of these
vertices to the other. This property makes it possible to select an arbitrary vertex
in a free tree and consider it as the root of the so-called rooted tree. A rooted tree
is usually depicted by placing its root on the top (level 0 of the tree), the vertices
adjacent to the root below it (level 1), the vertices two edges apart from the root
still below (level 2), and so on. Figure 1.11 presents such a transformation from a
free tree to a rooted tree.
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Rooted trees play a very important role in computer science, a much more
important one than free trees do; in fact, for the sake of brevity, they are often
referred to as simply “trees.” An obvious application of trees is for describing
hierarchies, from file directories to organizational charts of enterprises. There are
many less obvious applications, such as implementing dictionaries (see below),
efficient access to very large data sets (Section 7.4), and data encoding (Section
9.4). As we discuss in Chapter 2, trees also are helpful in analysis of recursive
algorithms. To finish this far-from-complete list of tree applications, we should
mention the so-called state-space trees that underline two important algorithm
design techniques: backtracking and branch-and-bound (Sections 12.1 and 12.2).

For any vertex v in a tree T , all the vertices on the simple path from the root
to that vertex are called ancestors of v. The vertex itself is usually considered its
own ancestor; the set of ancestors that excludes the vertex itself is referred to as
the set of proper ancestors. If (u, v) is the last edge of the simple path from the
root to vertex v (and u �= v), u is said to be the parent of v and v is called a child
of u; vertices that have the same parent are said to be siblings. A vertex with no
children is called a leaf ; a vertex with at least one child is called parental. All the
vertices for which a vertex v is an ancestor are said to be descendants of v; the
proper descendants exclude the vertex v itself. All the descendants of a vertex v

with all the edges connecting them form the subtree of T rooted at that vertex.
Thus, for the tree in Figure 1.11b, the root of the tree is a; vertices d, g, f, h, and i

are leaves, and vertices a, b, e, and c are parental; the parent of b is a; the children
of b are c and g; the siblings of b are d and e; and the vertices of the subtree rooted
at b are {b, c, g, h, i}.

The depth of a vertex v is the length of the simple path from the root to v. The
height of a tree is the length of the longest simple path from the root to a leaf. For
example, the depth of vertex c of the tree in Figure 1.11b is 2, and the height of
the tree is 3. Thus, if we count tree levels top down starting with 0 for the root’s
level, the depth of a vertex is simply its level in the tree, and the tree’s height is the
maximum level of its vertices. (You should be alert to the fact that some authors
define the height of a tree as the number of levels in it; this makes the height of
a tree larger by 1 than the height defined as the length of the longest simple path
from the root to a leaf.)

Ordered Trees An ordered tree is a rooted tree in which all the children of each
vertex are ordered. It is convenient to assume that in a tree’s diagram, all the
children are ordered left to right.

A binary tree can be defined as an ordered tree in which every vertex has
no more than two children and each child is designated as either a left child or a
right child of its parent; a binary tree may also be empty. An example of a binary
tree is given in Figure 1.12a. The binary tree with its root at the left (right) child
of a vertex in a binary tree is called the left (right) subtree of that vertex. Since
left and right subtrees are binary trees as well, a binary tree can also be defined
recursively. This makes it possible to solve many problems involving binary trees
by recursive algorithms.
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FIGURE 1.12 (a) Binary tree. (b) Binary search tree.
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FIGURE 1.13 Standard implementation of the binary search tree in Figure 1.12b.

In Figure 1.12b, some numbers are assigned to vertices of the binary tree in
Figure 1.12a. Note that a number assigned to each parental vertex is larger than all
the numbers in its left subtree and smaller than all the numbers in its right subtree.
Such trees are called binary search trees. Binary trees and binary search trees have
a wide variety of applications in computer science; you will encounter some of
them throughout the book. In particular, binary search trees can be generalized
to more general types of search trees called multiway search trees, which are
indispensable for efficient access to very large data sets.

As you will see later in the book, the efficiency of most important algorithms
for binary search trees and their extensions depends on the tree’s height. There-
fore, the following inequalities for the height h of a binary tree with n nodes are
especially important for analysis of such algorithms:

�log2 n� ≤ h ≤ n − 1.
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A binary tree is usually implemented for computing purposes by a collection
of nodes corresponding to vertices of the tree. Each node contains some informa-
tion associated with the vertex (its name or some value assigned to it) and two
pointers to the nodes representing the left child and right child of the vertex, re-
spectively. Figure 1.13 illustrates such an implementation for the binary search
tree in Figure 1.12b.

A computer representation of an arbitrary ordered tree can be done by simply
providing a parental vertex with the number of pointers equal to the number of
its children. This representation may prove to be inconvenient if the number of
children varies widely among the nodes. We can avoid this inconvenience by using
nodes with just two pointers, as we did for binary trees. Here, however, the left
pointer will point to the first child of the vertex, and the right pointer will point
to its next sibling. Accordingly, this representation is called the first child–next
sibling representation. Thus, all the siblings of a vertex are linked via the nodes’
right pointers in a singly linked list, with the first element of the list pointed to
by the left pointer of their parent. Figure 1.14a illustrates this representation for
the tree in Figure 1.11b. It is not difficult to see that this representation effectively
transforms an ordered tree into a binary tree said to be associated with the ordered
tree. We get this representation by “rotating” the pointers about 45 degrees
clockwise (see Figure 1.14b).

Sets and Dictionaries

The notion of a set plays a central role in mathematics. A set can be described as
an unordered collection (possibly empty) of distinct items called elements of the
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FIGURE 1.14 (a) First child–next sibling representation of the tree in Figure 1.11b. (b) Its
binary tree representation.
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set. A specific set is defined either by an explicit listing of its elements (e.g., S = {2,

3, 5, 7}) or by specifying a property that all the set’s elements and only they must
satisfy (e.g., S = {n: n is a prime number smaller than 10}). The most important set
operations are: checking membership of a given item in a given set; finding the
union of two sets, which comprises all the elements in either or both of them; and
finding the intersection of two sets, which comprises all the common elements in
the sets.

Sets can be implemented in computer applications in two ways. The first
considers only sets that are subsets of some large set U, called the universal
set. If set U has n elements, then any subset S of U can be represented by a bit
string of size n, called a bit vector, in which the ith element is 1 if and only if
the ith element of U is included in set S. Thus, to continue with our example, if
U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then S = {2, 3, 5, 7} is represented by the bit string
011010100. This way of representing sets makes it possible to implement the
standard set operations very fast, but at the expense of potentially using a large
amount of storage.

The second and more common way to represent a set for computing purposes
is to use the list structure to indicate the set’s elements. Of course, this option, too,
is feasible only for finite sets; fortunately, unlike mathematics, this is the kind of
sets most computer applications need. Note, however, the two principal points of
distinction between sets and lists. First, a set cannot contain identical elements;
a list can. This requirement for uniqueness is sometimes circumvented by the
introduction of a multiset, or bag, an unordered collection of items that are not
necessarily distinct. Second, a set is an unordered collection of items; therefore,
changing the order of its elements does not change the set. A list, defined as an
ordered collection of items, is exactly the opposite. This is an important theoretical
distinction, but fortunately it is not important for many applications. It is also
worth mentioning that if a set is represented by a list, depending on the application
at hand, it might be worth maintaining the list in a sorted order.

In computing, the operations we need to perform for a set or a multiset most
often are searching for a given item, adding a new item, and deleting an item
from the collection. A data structure that implements these three operations is
called the dictionary. Note the relationship between this data structure and the
problem of searching mentioned in Section 1.3; obviously, we are dealing here
with searching in a dynamic context. Consequently, an efficient implementation
of a dictionary has to strike a compromise between the efficiency of searching and
the efficiencies of the other two operations. There are quite a few ways a dictionary
can be implemented. They range from an unsophisticated use of arrays (sorted or
not) to much more sophisticated techniques such as hashing and balanced search
trees, which we discuss later in the book.

A number of applications in computing require a dynamic partition of some
n-element set into a collection of disjoint subsets. After being initialized as a
collection of n one-element subsets, the collection is subjected to a sequence
of intermixed union and search operations. This problem is called the set union
problem. We discuss efficient algorithmic solutions to this problem in Section 9.2,
in conjunction with one of its important applications.
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You may have noticed that in our review of basic data structures we almost al-
ways mentioned specific operations that are typically performed for the structure
in question. This intimate relationship between the data and operations has been
recognized by computer scientists for a long time. It has led them in particular
to the idea of an abstract data type (ADT): a set of abstract objects represent-
ing data items with a collection of operations that can be performed on them. As
illustrations of this notion, reread, say, our definitions of the priority queue and
dictionary. Although abstract data types could be implemented in older procedu-
ral languages such as Pascal (see, e.g., [Aho83]), it is much more convenient to
do this in object-oriented languages such as C++ and Java, which support abstract
data types by means of classes.

Exercises 1.4

1. Describe how one can implement each of the following operations on an array
so that the time it takes does not depend on the array’s size n.
a. Delete the ith element of an array (1 ≤ i ≤ n).

b. Delete the ith element of a sorted array (the remaining array has to stay
sorted, of course).

2. If you have to solve the searching problem for a list of n numbers, how can you
take advantage of the fact that the list is known to be sorted? Give separate
answers for
a. lists represented as arrays.

b. lists represented as linked lists.

3. a. Show the stack after each operation of the following sequence that starts
with the empty stack:

push(a), push(b), pop, push(c), push(d), pop

b. Show the queue after each operation of the following sequence that starts
with the empty queue:

enqueue(a), enqueue(b), dequeue, enqueue(c), enqueue(d), dequeue

4. a. Let A be the adjacency matrix of an undirected graph. Explain what prop-
erty of the matrix indicates that

i. the graph is complete.
ii. the graph has a loop, i.e., an edge connecting a vertex to itself.

iii. the graph has an isolated vertex, i.e., a vertex with no edges incident
to it.

b. Answer the same questions for the adjacency list representation.

5. Give a detailed description of an algorithm for transforming a free tree into
a tree rooted at a given vertex of the free tree.
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6. Prove the inequalities that bracket the height of a binary tree with n vertices:

�log2 n� ≤ h ≤ n − 1.

7. Indicate how the ADT priority queue can be implemented as
a. an (unsorted) array.

b. a sorted array.

c. a binary search tree.

8. How would you implement a dictionary of a reasonably small size n if you
knew that all its elements are distinct (e.g., names of the 50 states of the United
States)? Specify an implementation of each dictionary operation.

9. For each of the following applications, indicate the most appropriate data
structure:
a. answering telephone calls in the order of their known priorities

b. sending backlog orders to customers in the order they have been received

c. implementing a calculator for computing simple arithmetical expressions

10. Anagram checking Design an algorithm for checking whether two given
words are anagrams, i.e., whether one word can be obtained by permuting
the letters of the other. For example, the words tea and eat are anagrams.

SUMMARY

An algorithm is a sequence of nonambiguous instructions for solving a
problem in a finite amount of time. An input to an algorithm specifies an
instance of the problem the algorithm solves.

Algorithms can be specified in a natural language or pseudocode; they can
also be implemented as computer programs.

Among several ways to classify algorithms, the two principal alternatives are:
. to group algorithms according to types of problems they solve
. to group algorithms according to underlying design techniques they are

based upon

The important problem types are sorting, searching, string processing, graph
problems, combinatorial problems, geometric problems, and numerical
problems.

Algorithm design techniques (or “strategies” or “paradigms”) are general
approaches to solving problems algorithmically, applicable to a variety of
problems from different areas of computing.
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Although designing an algorithm is undoubtedly a creative activity, one can
identify a sequence of interrelated actions involved in such a process. They
are summarized in Figure 1.2.

A good algorithm is usually the result of repeated efforts and rework.

The same problem can often be solved by several algorithms. For example,
three algorithms were given for computing the greatest common divisor of
two integers: Euclid’s algorithm, the consecutive integer checking algorithm,
and the middle-school method enhanced by the sieve of Eratosthenes for
generating a list of primes.

Algorithms operate on data. This makes the issue of data structuring critical
for efficient algorithmic problem solving. The most important elementary data
structures are the array and the linked list. They are used for representing
more abstract data structures such as the list, the stack, the queue, the graph
(via its adjacency matrix or adjacency lists), the binary tree, and the set.

An abstract collection of objects with several operations that can be per-
formed on them is called an abstract data type (ADT). The list, the stack, the
queue, the priority queue, and the dictionary are important examples of ab-
stract data types. Modern object-oriented languages support implementation
of ADTs by means of classes.
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2
Fundamentals of the Analysis
of Algorithm Efficiency

I often say that when you can measure what you are speaking about and
express it in numbers you know something about it; but when you cannot
express it in numbers your knowledge is a meagre and unsatisfactory
kind: it may be the beginning of knowledge but you have scarcely, in your
thoughts, advanced to the stage of science, whatever the matter may be.

—Lord Kelvin (1824–1907)

Not everything that can be counted counts, and not everything that counts
can be counted.

—Albert Einstein (1879–1955)

This chapter is devoted to analysis of algorithms. The American Heritage Dic-
tionary defines “analysis” as “the separation of an intellectual or substantial

whole into its constituent parts for individual study.” Accordingly, each of the prin-
cipal dimensions of an algorithm pointed out in Section 1.2 is both a legitimate and
desirable subject of study. But the term “analysis of algorithms” is usually used in
a narrower, technical sense to mean an investigation of an algorithm’s efficiency
with respect to two resources: running time and memory space. This emphasis on
efficiency is easy to explain. First, unlike such dimensions as simplicity and gen-
erality, efficiency can be studied in precise quantitative terms. Second, one can
argue—although this is hardly always the case, given the speed and memory of
today’s computers—that the efficiency considerations are of primary importance
from a practical point of view. In this chapter, we too will limit the discussion to
an algorithm’s efficiency.

41
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We start with a general framework for analyzing algorithm efficiency in Sec-
tion 2.1. This section is arguably the most important in the chapter; the funda-
mental nature of the topic makes it also one of the most important sections in the
entire book.

In Section 2.2, we introduce three notations: O (“big oh”), � (“big omega”),
and � (“big theta”). Borrowed from mathematics, these notations have become
the language for discussing the efficiency of algorithms.

In Section 2.3, we show how the general framework outlined in Section 2.1 can
be systematically applied to analyzing the efficiency of nonrecursive algorithms.
The main tool of such an analysis is setting up a sum representing the algorithm’s
running time and then simplifying the sum by using standard sum manipulation
techniques.

In Section 2.4, we show how the general framework outlined in Section 2.1
can be systematically applied to analyzing the efficiency of recursive algorithms.
Here, the main tool is not a summation but a special kind of equation called a
recurrence relation. We explain how such recurrence relations can be set up and
then introduce a method for solving them.

Although we illustrate the analysis framework and the methods of its appli-
cations by a variety of examples in the first four sections of this chapter, Section
2.5 is devoted to yet another example—that of the Fibonacci numbers. Discov-
ered 800 years ago, this remarkable sequence appears in a variety of applications
both within and outside computer science. A discussion of the Fibonacci sequence
serves as a natural vehicle for introducing an important class of recurrence rela-
tions not solvable by the method of Section 2.4. We also discuss several algorithms
for computing the Fibonacci numbers, mostly for the sake of a few general obser-
vations about the efficiency of algorithms and methods of analyzing them.

The methods of Sections 2.3 and 2.4 provide a powerful technique for analyz-
ing the efficiency of many algorithms with mathematical clarity and precision, but
these methods are far from being foolproof. The last two sections of the chapter
deal with two approaches—empirical analysis and algorithm visualization—that
complement the pure mathematical techniques of Sections 2.3 and 2.4. Much
newer and, hence, less developed than their mathematical counterparts, these ap-
proaches promise to play an important role among the tools available for analysis
of algorithm efficiency.

2.1 The Analysis Framework

In this section, we outline a general framework for analyzing the efficiency of algo-
rithms. We already mentioned in Section 1.2 that there are two kinds of efficiency:
time efficiency and space efficiency. Time efficiency, also called time complexity,
indicates how fast an algorithm in question runs. Space efficiency, also called space
complexity, refers to the amount of memory units required by the algorithm in ad-
dition to the space needed for its input and output. In the early days of electronic
computing, both resources—time and space—were at a premium. Half a century
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of relentless technological innovations have improved the computer’s speed and
memory size by many orders of magnitude. Now the amount of extra space re-
quired by an algorithm is typically not of as much concern, with the caveat that
there is still, of course, a difference between the fast main memory, the slower
secondary memory, and the cache. The time issue has not diminished quite to the
same extent, however. In addition, the research experience has shown that for
most problems, we can achieve much more spectacular progress in speed than in
space. Therefore, following a well-established tradition of algorithm textbooks, we
primarily concentrate on time efficiency, but the analytical framework introduced
here is applicable to analyzing space efficiency as well.

Measuring an Input’s Size

Let’s start with the obvious observation that almost all algorithms run longer on
larger inputs. For example, it takes longer to sort larger arrays, multiply larger
matrices, and so on. Therefore, it is logical to investigate an algorithm’s efficiency
as a function of some parameter n indicating the algorithm’s input size.1 In most
cases, selecting such a parameter is quite straightforward. For example, it will be
the size of the list for problems of sorting, searching, finding the list’s smallest
element, and most other problems dealing with lists. For the problem of evaluating
a polynomial p(x) = anx

n + . . . + a0 of degree n, it will be the polynomial’s degree
or the number of its coefficients, which is larger by 1 than its degree. You’ll see from
the discussion that such a minor difference is inconsequential for the efficiency
analysis.

There are situations, of course, where the choice of a parameter indicating
an input size does matter. One such example is computing the product of two
n × n matrices. There are two natural measures of size for this problem. The first
and more frequently used is the matrix order n. But the other natural contender
is the total number of elements N in the matrices being multiplied. (The latter
is also more general since it is applicable to matrices that are not necessarily
square.) Since there is a simple formula relating these two measures, we can easily
switch from one to the other, but the answer about an algorithm’s efficiency will
be qualitatively different depending on which of these two measures we use (see
Problem 2 in this section’s exercises).

The choice of an appropriate size metric can be influenced by operations of
the algorithm in question. For example, how should we measure an input’s size
for a spell-checking algorithm? If the algorithm examines individual characters of
its input, we should measure the size by the number of characters; if it works by
processing words, we should count their number in the input.

We should make a special note about measuring input size for algorithms
solving problems such as checking primality of a positive integer n. Here, the input
is just one number, and it is this number’s magnitude that determines the input

1. Some algorithms require more than one parameter to indicate the size of their inputs (e.g., the number
of vertices and the number of edges for algorithms on graphs represented by their adjacency lists).
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size. In such situations, it is preferable to measure size by the number b of bits in
the n’s binary representation:

b = �log2 n� + 1. (2.1)

This metric usually gives a better idea about the efficiency of algorithms in ques-
tion.

Units for Measuring Running Time

The next issue concerns units for measuring an algorithm’s running time. Of
course, we can simply use some standard unit of time measurement—a second,
or millisecond, and so on—to measure the running time of a program implement-
ing the algorithm. There are obvious drawbacks to such an approach, however:
dependence on the speed of a particular computer, dependence on the quality of
a program implementing the algorithm and of the compiler used in generating the
machine code, and the difficulty of clocking the actual running time of the pro-
gram. Since we are after a measure of an algorithm’s efficiency, we would like to
have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each of the algorithm’s
operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important
operation of the algorithm, called the basic operation, the operation contributing
the most to the total running time, and compute the number of times the basic
operation is executed.

As a rule, it is not difficult to identify the basic operation of an algorithm: it
is usually the most time-consuming operation in the algorithm’s innermost loop.
For example, most sorting algorithms work by comparing elements (keys) of a
list being sorted with each other; for such algorithms, the basic operation is a key
comparison. As another example, algorithms for mathematical problems typically
involve some or all of the four arithmetical operations: addition, subtraction,
multiplication, and division. Of the four, the most time-consuming operation is
division, followed by multiplication and then addition and subtraction, with the
last two usually considered together.2

Thus, the established framework for the analysis of an algorithm’s time ef-
ficiency suggests measuring it by counting the number of times the algorithm’s
basic operation is executed on inputs of size n. We will find out how to compute
such a count for nonrecursive and recursive algorithms in Sections 2.3 and 2.4,
respectively.

Here is an important application. Let cop be the execution time of an algo-
rithm’s basic operation on a particular computer, and let C(n) be the number of
times this operation needs to be executed for this algorithm. Then we can estimate

2. On some computers, multiplication does not take longer than addition/subtraction (see, for example,
the timing data provided by Kernighan and Pike in [Ker99, pp. 185–186]).
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the running time T (n) of a program implementing this algorithm on that computer
by the formula

T (n) ≈ copC(n).

Of course, this formula should be used with caution. The count C(n) does not
contain any information about operations that are not basic, and, in fact, the
count itself is often computed only approximately. Further, the constant cop is
also an approximation whose reliability is not always easy to assess. Still, unless
n is extremely large or very small, the formula can give a reasonable estimate of
the algorithm’s running time. It also makes it possible to answer such questions as
“How much faster would this algorithm run on a machine that is 10 times faster
than the one we have?” The answer is, obviously, 10 times. Or, assuming that
C(n) = 1

2n(n − 1), how much longer will the algorithm run if we double its input
size? The answer is about four times longer. Indeed, for all but very small values
of n,

C(n) = 1
2
n(n − 1) = 1

2
n2 − 1

2
n ≈ 1

2
n2

and therefore

T (2n)

T (n)
≈ copC(2n)

copC(n)
≈

1
2 (2n)2

1
2n2

= 4.

Note that we were able to answer the last question without actually knowing
the value of cop: it was neatly cancelled out in the ratio. Also note that 1

2 , the
multiplicative constant in the formula for the count C(n), was also cancelled out.
It is for these reasons that the efficiency analysis framework ignores multiplicative
constants and concentrates on the count’s order of growth to within a constant
multiple for large-size inputs.

Orders of Growth

Why this emphasis on the count’s order of growth for large input sizes? A differ-
ence in running times on small inputs is not what really distinguishes efficient
algorithms from inefficient ones. When we have to compute, for example, the
greatest common divisor of two small numbers, it is not immediately clear how
much more efficient Euclid’s algorithm is compared to the other two algorithms
discussed in Section 1.1 or even why we should care which of them is faster and
by how much. It is only when we have to find the greatest common divisor of two
large numbers that the difference in algorithm efficiencies becomes both clear and
important. For large values of n, it is the function’s order of growth that counts: just
look at Table 2.1, which contains values of a few functions particularly important
for analysis of algorithms.

The magnitude of the numbers in Table 2.1 has a profound significance for
the analysis of algorithms. The function growing the slowest among these is the
logarithmic function. It grows so slowly, in fact, that we should expect a program
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TABLE 2.1 Values (some approximate) of several functions important for
analysis of algorithms

n log2 n n n log2 n n2 n3 2n n!

10 3.3 101 3.3.101 102 103 103 3.6.106

102 6.6 102 6.6.102 104 106 1.3.1030 9.3.10157

103 10 103 1.0.104 106 109

104 13 104 1.3.105 108 1012

105 17 105 1.7.106 1010 1015

106 20 106 2.0.107 1012 1018

implementing an algorithm with a logarithmic basic-operation count to run practi-
cally instantaneously on inputs of all realistic sizes. Also note that although specific
values of such a count depend, of course, on the logarithm’s base, the formula

loga n = loga b logb n

makes it possible to switch from one base to another, leaving the count logarithmic
but with a new multiplicative constant. This is why we omit a logarithm’s base and
write simply log n in situations where we are interested just in a function’s order
of growth to within a multiplicative constant.

On the other end of the spectrum are the exponential function 2n and the
factorial function n! Both these functions grow so fast that their values become
astronomically large even for rather small values of n. (This is the reason why we
did not include their values for n > 102 in Table 2.1.) For example, it would take
about 4 . 1010 years for a computer making a trillion (1012) operations per second
to execute 2100 operations. Though this is incomparably faster than it would have
taken to execute 100!operations, it is still longer than 4.5 billion (4.5 . 109) years—
the estimated age of the planet Earth. There is a tremendous difference between
the orders of growth of the functions 2n and n!, yet both are often referred to as
“exponential-growth functions” (or simply “exponential”) despite the fact that,
strictly speaking, only the former should be referred to as such. The bottom line,
which is important to remember, is this:

Algorithms that require an exponential number of operations are practical
for solving only problems of very small sizes.

Another way to appreciate the qualitative difference among the orders of
growth of the functions in Table 2.1 is to consider how they react to, say, a
twofold increase in the value of their argument n. The function log2 n increases in
value by just 1 (because log2 2n = log2 2 + log2 n = 1 + log2 n); the linear function
increases twofold, the linearithmic function n log2 n increases slightly more than
twofold; the quadratic function n2 and cubic function n3 increase fourfold and
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eightfold, respectively (because (2n)2 = 4n2 and (2n)3 = 8n3); the value of 2n gets
squared (because 22n = (2n)2); and n! increases much more than that (yes, even
mathematics refuses to cooperate to give a neat answer for n!).

Worst-Case, Best-Case, and Average-Case Efficiencies

In the beginning of this section, we established that it is reasonable to measure
an algorithm’s efficiency as a function of a parameter indicating the size of the
algorithm’s input. But there are many algorithms for which running time depends
not only on an input size but also on the specifics of a particular input. Consider,
as an example, sequential search. This is a straightforward algorithm that searches
for a given item (some search key K) in a list of n elements by checking successive
elements of the list until either a match with the search key is found or the list
is exhausted. Here is the algorithm’s pseudocode, in which, for simplicity, a list is
implemented as an array. It also assumes that the second condition A[i] �= K will
not be checked if the first one, which checks that the array’s index does not exceed
its upper bound, fails.

ALGORITHM SequentialSearch(A[0..n − 1], K)

//Searches for a given value in a given array by sequential search
//Input: An array A[0..n − 1] and a search key K

//Output: The index of the first element in A that matches K

// or −1 if there are no matching elements
i ← 0
while i < n and A[i] �= K do

i ← i + 1
if i < n return i

else return −1

Clearly, the running time of this algorithm can be quite different for the
same list size n. In the worst case, when there are no matching elements or
the first matching element happens to be the last one on the list, the algorithm
makes the largest number of key comparisons among all possible inputs of size
n: Cworst(n) = n.

The worst-case efficiency of an algorithm is its efficiency for the worst-case
input of size n, which is an input (or inputs) of size n for which the algorithm
runs the longest among all possible inputs of that size. The way to determine
the worst-case efficiency of an algorithm is, in principle, quite straightforward:
analyze the algorithm to see what kind of inputs yield the largest value of the basic
operation’s count C(n) among all possible inputs of size n and then compute this
worst-case value Cworst(n). (For sequential search, the answer was obvious. The
methods for handling less trivial situations are explained in subsequent sections of
this chapter.) Clearly, the worst-case analysis provides very important information
about an algorithm’s efficiency by bounding its running time from above. In other
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words, it guarantees that for any instance of size n, the running time will not exceed
Cworst(n), its running time on the worst-case inputs.

The best-case efficiency of an algorithm is its efficiency for the best-case input
of size n, which is an input (or inputs) of size n for which the algorithm runs the
fastest among all possible inputs of that size. Accordingly, we can analyze the best-
case efficiency as follows. First, we determine the kind of inputs for which the count
C(n) will be the smallest among all possible inputs of size n. (Note that the best
case does not mean the smallest input; it means the input of size n for which the
algorithm runs the fastest.) Then we ascertain the value of C(n) on these most
convenient inputs. For example, the best-case inputs for sequential search are lists
of size n with their first element equal to a search key; accordingly, Cbest(n) = 1
for this algorithm.

The analysis of the best-case efficiency is not nearly as important as that
of the worst-case efficiency. But it is not completely useless, either. Though we
should not expect to get best-case inputs, we might be able to take advantage of
the fact that for some algorithms a good best-case performance extends to some
useful types of inputs close to being the best-case ones. For example, there is a
sorting algorithm (insertion sort) for which the best-case inputs are already sorted
arrays on which the algorithm works very fast. Moreover, the best-case efficiency
deteriorates only slightly for almost-sorted arrays. Therefore, such an algorithm
might well be the method of choice for applications dealing with almost-sorted
arrays. And, of course, if the best-case efficiency of an algorithm is unsatisfactory,
we can immediately discard it without further analysis.

It should be clear from our discussion, however, that neither the worst-case
analysis nor its best-case counterpart yields the necessary information about an
algorithm’s behavior on a “typical” or “random” input. This is the information that
the average-case efficiency seeks to provide. To analyze the algorithm’s average-
case efficiency, we must make some assumptions about possible inputs of size n.

Let’s consider again sequential search. The standard assumptions are that
(a) the probability of a successful search is equal to p (0 ≤ p ≤ 1) and (b) the
probability of the first match occurring in the ith position of the list is the same
for every i. Under these assumptions—the validity of which is usually difficult to
verify, their reasonableness notwithstanding—we can find the average number
of key comparisons Cavg(n) as follows. In the case of a successful search, the
probability of the first match occurring in the ith position of the list is p/n for
every i, and the number of comparisons made by the algorithm in such a situation
is obviously i. In the case of an unsuccessful search, the number of comparisons
will be n with the probability of such a search being (1 − p). Therefore,

Cavg(n) = [1 . p

n
+ 2 . p

n
+ . . . + i . p

n
+ . . . + n . p

n
] + n . (1 − p)

= p

n
[1 + 2 + . . . + i + . . . + n] + n(1 − p)

= p

n

n(n + 1)
2

+ n(1 − p) = p(n + 1)
2

+ n(1 − p).
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This general formula yields some quite reasonable answers. For example, if p = 1
(the search must be successful), the average number of key comparisons made
by sequential search is (n + 1)/2; that is, the algorithm will inspect, on average,
about half of the list’s elements. If p = 0 (the search must be unsuccessful), the
average number of key comparisons will be n because the algorithm will inspect
all n elements on all such inputs.

As you can see from this very elementary example, investigation of the
average-case efficiency is considerably more difficult than investigation of the
worst-case and best-case efficiencies. The direct approach for doing this involves
dividing all instances of size n into several classes so that for each instance of the
class the number of times the algorithm’s basic operation is executed is the same.
(What were these classes for sequential search?) Then a probability distribution
of inputs is obtained or assumed so that the expected value of the basic operation’s
count can be found.

The technical implementation of this plan is rarely easy, however, and prob-
abilistic assumptions underlying it in each particular case are usually difficult to
verify. Given our quest for simplicity, we will mostly quote known results about
the average-case efficiency of algorithms under discussion. If you are interested
in derivations of these results, consult such books as [Baa00], [Sed96], [KnuI],
[KnuII], and [KnuIII].

It should be clear from the preceding discussion that the average-case ef-
ficiency cannot be obtained by taking the average of the worst-case and the
best-case efficiencies. Even though this average does occasionally coincide with
the average-case cost, it is not a legitimate way of performing the average-case
analysis.

Does one really need the average-case efficiency information? The answer is
unequivocally yes: there are many important algorithms for which the average-
case efficiency is much better than the overly pessimistic worst-case efficiency
would lead us to believe. So, without the average-case analysis, computer scientists
could have missed many important algorithms.

Yet another type of efficiency is called amortized efficiency. It applies not to
a single run of an algorithm but rather to a sequence of operations performed
on the same data structure. It turns out that in some situations a single operation
can be expensive, but the total time for an entire sequence of n such operations is
always significantly better than the worst-case efficiency of that single operation
multiplied by n. So we can “amortize” the high cost of such a worst-case occur-
rence over the entire sequence in a manner similar to the way a business would
amortize the cost of an expensive item over the years of the item’s productive life.
This sophisticated approach was discovered by the American computer scientist
Robert Tarjan, who used it, among other applications, in developing an interest-
ing variation of the classic binary search tree (see [Tar87] for a quite readable
nontechnical discussion and [Tar85] for a technical account). We will see an ex-
ample of the usefulness of amortized efficiency in Section 9.2, when we consider
algorithms for finding unions of disjoint sets.
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Recapitulation of the Analysis Framework

Before we leave this section, let us summarize the main points of the framework
outlined above.

Both time and space efficiencies are measured as functions of the algorithm’s
input size.
Time efficiency is measured by counting the number of times the algorithm’s
basic operation is executed. Space efficiency is measured by counting the
number of extra memory units consumed by the algorithm.
The efficiencies of some algorithms may differ significantly for inputs of the
same size. For such algorithms, we need to distinguish between the worst-case,
average-case, and best-case efficiencies.
The framework’s primary interest lies in the order of growth of the algorithm’s
running time (extra memory units consumed) as its input size goes to infinity.

In the next section, we look at formal means to investigate orders of growth. In
Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursive
and recursive algorithms, respectively. It is there that you will see how the analysis
framework outlined here can be applied to investigating the efficiency of specific
algorithms. You will encounter many more examples throughout the rest of the
book.

Exercises 2.1

1. For each of the following algorithms, indicate (i) a natural size metric for its
inputs, (ii) its basic operation, and (iii) whether the basic operation count can
be different for inputs of the same size:
a. computing the sum of n numbers

b. computing n!

c. finding the largest element in a list of n numbers

d. Euclid’s algorithm

e. sieve of Eratosthenes

f. pen-and-pencil algorithm for multiplying two n-digit decimal integers

2. a. Consider the definition-based algorithm for adding two n × n matrices.
What is its basic operation? How many times is it performed as a function
of the matrix order n? As a function of the total number of elements in the
input matrices?

b. Answer the same questions for the definition-based algorithm for matrix
multiplication.
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3. Consider a variation of sequential search that scans a list to return the number
of occurrences of a given search key in the list. Does its efficiency differ from
the efficiency of classic sequential search?

4. a. Glove selection There are 22 gloves in a drawer: 5 pairs of red gloves, 4
pairs of yellow, and 2 pairs of green. You select the gloves in the dark and
can check them only after a selection has been made. What is the smallest
number of gloves you need to select to have at least one matching pair in
the best case? In the worst case?

b. Missing socks Imagine that after washing 5 distinct pairs of socks, you
discover that two socks are missing. Of course, you would like to have
the largest number of complete pairs remaining. Thus, you are left with
4 complete pairs in the best-case scenario and with 3 complete pairs in
the worst case. Assuming that the probability of disappearance for each
of the 10 socks is the same, find the probability of the best-case scenario;
the probability of the worst-case scenario; the number of pairs you should
expect in the average case.

5. a. Prove formula (2.1) for the number of bits in the binary representation of
a positive decimal integer.

b. Prove the alternative formula for the number of bits in the binary repre-
sentation of a positive integer n:

b = �log2(n + 1)�.
c. What would be the analogous formulas for the number of decimal digits?

d. Explain why, within the accepted analysis framework, it does not matter
whether we use binary or decimal digits in measuring n’s size.

6. Suggest how any sorting algorithm can be augmented in a way to make the
best-case count of its key comparisons equal to just n − 1 (n is a list’s size,
of course). Do you think it would be a worthwhile addition to any sorting
algorithm?

7. Gaussian elimination, the classic algorithm for solving systems of n linear
equations in n unknowns, requires about 1

3n3 multiplications, which is the
algorithm’s basic operation.
a. How much longer should you expect Gaussian elimination to work on a

system of 1000 equations versus a system of 500 equations?

b. You are considering buying a computer that is 1000 times faster than the
one you currently have. By what factor will the faster computer increase
the sizes of systems solvable in the same amount of time as on the old
computer?

8. For each of the following functions, indicate how much the function’s value
will change if its argument is increased fourfold.

a. log2 n b.
√

n c. n d. n2 e. n3 f. 2n



52 Fundamentals of the Analysis of Algorithm Efficiency

9. For each of the following pairs of functions, indicate whether the first function
of each of the following pairs has a lower, same, or higher order of growth (to
within a constant multiple) than the second function.

a. n(n + 1) and 2000n2 b. 100n2 and 0.01n3

c. log2 n and ln n d. log2
2 n and log2 n2

e. 2n−1 and 2n f. (n − 1)! and n!

10. Invention of chess
a. According to a well-known legend, the game of chess was invented many

centuries ago in northwestern India by a certain sage. When he took his
invention to his king, the king liked the game so much that he offered the
inventor any reward he wanted. The inventor asked for some grain to be
obtained as follows: just a single grain of wheat was to be placed on the
first square of the chessboard, two on the second, four on the third, eight
on the fourth, and so on, until all 64 squares had been filled. If it took just
1 second to count each grain, how long would it take to count all the grain
due to him?

b. How long would it take if instead of doubling the number of grains for each
square of the chessboard, the inventor asked for adding two grains?

2.2 Asymptotic Notations and Basic Efficiency Classes

As pointed out in the previous section, the efficiency analysis framework con-
centrates on the order of growth of an algorithm’s basic operation count as the
principal indicator of the algorithm’s efficiency. To compare and rank such orders
of growth, computer scientists use three notations: O (big oh), � (big omega), and
� (big theta). First, we introduce these notations informally, and then, after sev-
eral examples, formal definitions are given. In the following discussion, t (n) and
g(n) can be any nonnegative functions defined on the set of natural numbers. In
the context we are interested in, t (n) will be an algorithm’s running time (usually
indicated by its basic operation count C(n)), and g(n) will be some simple function
to compare the count with.

Informal Introduction

Informally, O(g(n)) is the set of all functions with a lower or same order of growth
as g(n) (to within a constant multiple, as n goes to infinity). Thus, to give a few
examples, the following assertions are all true:

n ∈ O(n2), 100n + 5 ∈ O(n2),
1
2
n(n − 1) ∈ O(n2).
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Indeed, the first two functions are linear and hence have a lower order of growth
than g(n) = n2, while the last one is quadratic and hence has the same order of
growth as n2. On the other hand,

n3 �∈ O(n2), 0.00001n3 �∈ O(n2), n4 + n + 1 �∈ O(n2).

Indeed, the functions n3 and 0.00001n3 are both cubic and hence have a higher
order of growth than n2, and so has the fourth-degree polynomial n4 + n + 1.

The second notation, �(g(n)), stands for the set of all functions with a higher
or same order of growth as g(n) (to within a constant multiple, as n goes to infinity).
For example,

n3 ∈ �(n2),
1
2
n(n − 1) ∈ �(n2), but 100n + 5 �∈ �(n2).

Finally, �(g(n)) is the set of all functions that have the same order of growth
as g(n) (to within a constant multiple, as n goes to infinity). Thus, every quadratic
function an2 + bn + c with a > 0 is in �(n2), but so are, among infinitely many
others, n2 + sin n and n2 + log n. (Can you explain why?)

Hopefully, this informal introduction has made you comfortable with the idea
behind the three asymptotic notations. So now come the formal definitions.

O-notation

DEFINITION A function t (n) is said to be in O(g(n)), denoted t (n) ∈ O(g(n)),

if t (n) is bounded above by some constant multiple of g(n) for all large n, i.e., if
there exist some positive constant c and some nonnegative integer n0 such that

t (n) ≤ cg(n) for all n ≥ n0.

The definition is illustrated in Figure 2.1 where, for the sake of visual clarity, n is
extended to be a real number.

As an example, let us formally prove one of the assertions made in the
introduction: 100n + 5 ∈ O(n2). Indeed,

100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n2.

Thus, as values of the constants c and n0 required by the definition, we can take
101 and 5, respectively.

Note that the definition gives us a lot of freedom in choosing specific values
for constants c and n0. For example, we could also reason that

100n + 5 ≤ 100n + 5n (for all n ≥ 1) = 105n

to complete the proof with c = 105 and n0 = 1.
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matter

nn0

cg(n)

t (n)

FIGURE 2.1 Big-oh notation: t (n) ∈ O(g(n)).

doesn't
matter

nn0

cg(n)

t (n)

FIGURE 2.2 Big-omega notation: t (n) ∈ �(g(n)).

�-notation

DEFINITION A function t (n) is said to be in �(g(n)), denoted t (n) ∈ �(g(n)), if
t (n) is bounded below by some positive constant multiple of g(n) for all large n,

i.e., if there exist some positive constant c and some nonnegative integer n0 such
that

t (n) ≥ cg(n) for all n ≥ n0.

The definition is illustrated in Figure 2.2.

Here is an example of the formal proof that n3 ∈ �(n2):

n3 ≥ n2 for all n ≥ 0,

i.e., we can select c = 1 and n0 = 0.
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doesn't
matter

nn0

c2g(n)

c1g(n)

t (n)

FIGURE 2.3 Big-theta notation: t (n) ∈ �(g(n)).

�-notation

DEFINITION A function t (n) is said to be in �(g(n)), denoted t (n) ∈ �(g(n)),

if t (n) is bounded both above and below by some positive constant multiples of
g(n) for all large n, i.e., if there exist some positive constants c1 and c2 and some
nonnegative integer n0 such that

c2g(n) ≤ t (n) ≤ c1g(n) for all n ≥ n0.

The definition is illustrated in Figure 2.3.

For example, let us prove that 1
2n(n − 1) ∈ �(n2). First, we prove the right

inequality (the upper bound):

1
2
n(n − 1) = 1

2
n2 − 1

2
n ≤ 1

2
n2 for all n ≥ 0.

Second, we prove the left inequality (the lower bound):

1
2
n(n − 1) = 1

2
n2 − 1

2
n ≥ 1

2
n2 − 1

2
n

1
2
n (for all n ≥ 2) = 1

4
n2.

Hence, we can select c2 = 1
4 , c1 = 1

2 , and n0 = 2.

Useful Property Involving the Asymptotic Notations

Using the formal definitions of the asymptotic notations, we can prove their
general properties (see Problem 7 in this section’s exercises for a few simple
examples). The following property, in particular, is useful in analyzing algorithms
that comprise two consecutively executed parts.
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THEOREM If t1(n) ∈ O(g1(n)) and t2(n) ∈ O(g2(n)), then

t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}).
(The analogous assertions are true for the � and � notations as well.)

PROOF The proof extends to orders of growth the following simple fact about
four arbitrary real numbers a1, b1, a2, b2: if a1 ≤ b1 and a2 ≤ b2, then a1 + a2 ≤
2 max{b1, b2}.

Since t1(n) ∈ O(g1(n)), there exist some positive constant c1 and some non-
negative integer n1 such that

t1(n) ≤ c1g1(n) for all n ≥ n1.

Similarly, since t2(n) ∈ O(g2(n)),

t2(n) ≤ c2g2(n) for all n ≥ n2.

Let us denote c3 = max{c1, c2} and consider n ≥ max{n1, n2} so that we can use
both inequalities. Adding them yields the following:

t1(n) + t2(n) ≤ c1g1(n) + c2g2(n)

≤ c3g1(n) + c3g2(n) = c3[g1(n) + g2(n)]

≤ c32 max{g1(n), g2(n)}.
Hence, t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}), with the constants c and n0 required
by the O definition being 2c3 = 2 max{c1, c2} and max{n1, n2}, respectively.

So what does this property imply for an algorithm that comprises two consec-
utively executed parts? It implies that the algorithm’s overall efficiency is deter-
mined by the part with a higher order of growth, i.e., its least efficient part:

t1(n) ∈ O(g1(n))

t2(n) ∈ O(g2(n))

}
t1(n) + t2(n) ∈ O(max{g1(n), g2(n)}).

For example, we can check whether an array has equal elements by the following
two-part algorithm: first, sort the array by applying some known sorting algorithm;
second, scan the sorted array to check its consecutive elements for equality. If, for
example, a sorting algorithm used in the first part makes no more than 1

2n(n − 1)
comparisons (and hence is in O(n2)) while the second part makes no more than
n − 1 comparisons (and hence is in O(n)), the efficiency of the entire algorithm
will be in O(max{n2, n}) = O(n2).

Using Limits for Comparing Orders of Growth

Though the formal definitions of O, �, and � are indispensable for proving their
abstract properties, they are rarely used for comparing the orders of growth of
two specific functions. A much more convenient method for doing so is based on
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computing the limit of the ratio of two functions in question. Three principal cases
may arise:

lim
n→∞

t (n)

g(n)
=
⎧⎨
⎩

0 implies that t (n) has a smaller order of growth than g(n),
c implies that t (n) has the same order of growth as g(n),
∞ implies that t (n) has a larger order of growth than g(n).3

Note that the first two cases mean that t (n) ∈ O(g(n)), the last two mean that
t (n) ∈ �(g(n)), and the second case means that t (n) ∈ �(g(n)).

The limit-based approach is often more convenient than the one based on
the definitions because it can take advantage of the powerful calculus techniques
developed for computing limits, such as L’Hôpital’s rule

lim
n→∞

t (n)

g(n)
= lim

n→∞
t ′(n)

g′(n)

and Stirling’s formula

n!≈ √
2πn

(
n

e

)n

for large values of n.

Here are three examples of using the limit-based approach to comparing
orders of growth of two functions.

EXAMPLE 1 Compare the orders of growth of 1
2n(n − 1) and n2. (This is one of

the examples we used at the beginning of this section to illustrate the definitions.)

lim
n→∞

1
2n(n − 1)

n2
= 1

2
lim

n→∞
n2 − n

n2
= 1

2
lim

n→∞(1 − 1
n
) = 1

2
.

Since the limit is equal to a positive constant, the functions have the same order
of growth or, symbolically, 1

2n(n − 1) ∈ �(n2).

EXAMPLE 2 Compare the orders of growth of log2 n and
√

n. (Unlike Exam-
ple 1, the answer here is not immediately obvious.)

lim
n→∞

log2 n√
n

= lim
n→∞

(
log2 n

)′(√
n
)′ = lim

n→∞

(
log2 e

) 1
n

1
2
√

n

= 2 log2 e lim
n→∞

1√
n

= 0.

Since the limit is equal to zero, log2 n has a smaller order of growth than
√

n. (Since
limn→∞

log2 n√
n

= 0, we can use the so-called little-oh notation: log2 n ∈ o(
√

n).

Unlike the big-Oh, the little-oh notation is rarely used in analysis of algorithms.)

3. The fourth case, in which such a limit does not exist, rarely happens in the actual practice of analyzing
algorithms. Still, this possibility makes the limit-based approach to comparing orders of growth less
general than the one based on the definitions of O, �, and �.
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EXAMPLE 3 Compare the orders of growth of n! and 2n. (We discussed this
informally in Section 2.1.) Taking advantage of Stirling’s formula, we get

lim
n→∞

n!
2n

= lim
n→∞

√
2πn

(
n
e

)n
2n

= lim
n→∞

√
2πn

nn

2nen
= lim

n→∞
√

2πn

(
n

2e

)n

= ∞.

Thus, though 2n grows very fast, n!grows still faster. We can write symbolically that
n! ∈ �(2n); note, however, that while the big-Omega notation does not preclude
the possibility that n! and 2n have the same order of growth, the limit computed
here certainly does.

Basic Efficiency Classes

Even though the efficiency analysis framework puts together all the functions
whose orders of growth differ by a constant multiple, there are still infinitely many
such classes. (For example, the exponential functions an have different orders of
growth for different values of base a.) Therefore, it may come as a surprise that
the time efficiencies of a large number of algorithms fall into only a few classes.
These classes are listed in Table 2.2 in increasing order of their orders of growth,
along with their names and a few comments.

You could raise a concern that classifying algorithms by their asymptotic effi-
ciency would be of little practical use since the values of multiplicative constants
are usually left unspecified. This leaves open the possibility of an algorithm in a
worse efficiency class running faster than an algorithm in a better efficiency class
for inputs of realistic sizes. For example, if the running time of one algorithm is n3

while the running time of the other is 106n2, the cubic algorithm will outperform
the quadratic algorithm unless n exceeds 106. A few such anomalies are indeed
known. Fortunately, multiplicative constants usually do not differ that drastically.
As a rule, you should expect an algorithm from a better asymptotic efficiency class
to outperform an algorithm from a worse class even for moderately sized inputs.
This observation is especially true for an algorithm with a better than exponential
running time versus an exponential (or worse) algorithm.

Exercises 2.2

1. Use the most appropriate notation among O, �, and � to indicate the time
efficiency class of sequential search (see Section 2.1)
a. in the worst case.

b. in the best case.

c. in the average case.

2. Use the informal definitions of O, �, and � to determine whether the follow-
ing assertions are true or false.
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TABLE 2.2 Basic asymptotic efficiency classes

Class Name Comments

1 constant Short of best-case efficiencies, very few reasonable
examples can be given since an algorithm’s running
time typically goes to infinity when its input size grows
infinitely large.

log n logarithmic Typically, a result of cutting a problem’s size by a
constant factor on each iteration of the algorithm (see
Section 4.4). Note that a logarithmic algorithm cannot
take into account all its input or even a fixed fraction
of it: any algorithm that does so will have at least linear
running time.

n linear Algorithms that scan a list of size n (e.g., sequential
search) belong to this class.

n log n linearithmic Many divide-and-conquer algorithms (see Chapter 5),
including mergesort and quicksort in the average case,
fall into this category.

n2 quadratic Typically, characterizes efficiency of algorithms with
two embedded loops (see the next section). Elemen-
tary sorting algorithms and certain operations on n × n

matrices are standard examples.
n3 cubic Typically, characterizes efficiency of algorithms with

three embedded loops (see the next section). Several
nontrivial algorithms from linear algebra fall into this
class.

2n exponential Typical for algorithms that generate all subsets of an
n-element set. Often, the term “exponential” is used
in a broader sense to include this and larger orders of
growth as well.

n! factorial Typical for algorithms that generate all permutations
of an n-element set.

a. n(n + 1)/2 ∈ O(n3) b. n(n + 1)/2 ∈ O(n2)

c. n(n + 1)/2 ∈ �(n3) d. n(n + 1)/2 ∈ �(n)

3. For each of the following functions, indicate the class �(g(n)) the function
belongs to. (Use the simplest g(n) possible in your answers.) Prove your
assertions.

a. (n2 + 1)10 b.
√

10n2 + 7n + 3

c. 2n lg(n + 2)2 + (n + 2)2 lg n
2 d. 2n+1 + 3n−1

e. �log2 n�
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4. a. Table 2.1 contains values of several functions that often arise in the analysis
of algorithms. These values certainly suggest that the functions

log n, n, n log2 n, n2, n3, 2n, n!

are listed in increasing order of their order of growth. Do these values
prove this fact with mathematical certainty?

b. Prove that the functions are indeed listed in increasing order of their order
of growth.

5. List the following functions according to their order of growth from the lowest
to the highest:

(n − 2)!, 5 lg(n + 100)10, 22n, 0.001n4 + 3n3 + 1, ln2 n, 3
√

n, 3n.

6. a. Prove that every polynomial of degree k, p(n) = akn
k + ak−1n

k−1 + . . . + a0
with ak > 0, belongs to �(nk).

b. Prove that exponential functions an have different orders of growth for
different values of base a > 0.

7. Prove the following assertions by using the definitions of the notations in-
volved, or disprove them by giving a specific counterexample.
a. If t (n) ∈ O(g(n)), then g(n) ∈ �(t(n)).

b. �(αg(n)) = �(g(n)), where α > 0.

c. �(g(n)) = O(g(n)) ∩ �(g(n)).

d. For any two nonnegative functions t (n) and g(n) defined on the set of
nonnegative integers, either t (n) ∈ O(g(n)), or t (n) ∈ �(g(n)), or both.

8. Prove the section’s theorem for
a. � notation. b. � notation.

9. We mentioned in this section that one can check whether all elements of an
array are distinct by a two-part algorithm based on the array’s presorting.
a. If the presorting is done by an algorithm with a time efficiency in �(n log n),

what will be a time-efficiency class of the entire algorithm?

b. If the sorting algorithm used for presorting needs an extra array of size n,

what will be the space-efficiency class of the entire algorithm?

10. The range of a finite nonempty set of n real numbers S is defined as the differ-
ence between the largest and smallest elements of S. For each representation
of S given below, describe in English an algorithm to compute the range. Indi-
cate the time efficiency classes of these algorithms using the most appropriate
notation (O, �, or �).

a. An unsorted array

b. A sorted array

c. A sorted singly linked list

d. A binary search tree
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11. Lighter or heavier? You have n > 2 identical-looking coins and a two-pan
balance scale with no weights. One of the coins is a fake, but you do not know
whether it is lighter or heavier than the genuine coins, which all weigh the
same. Design a �(1) algorithm to determine whether the fake coin is lighter
or heavier than the others.

12. Door in a wall You are facing a wall that stretches infinitely in both direc-
tions. There is a door in the wall, but you know neither how far away nor in
which direction. You can see the door only when you are right next to it. De-
sign an algorithm that enables you to reach the door by walking at most O(n)

steps where n is the (unknown to you) number of steps between your initial
position and the door. [Par95]

2.3 Mathematical Analysis of Nonrecursive Algorithms

In this section, we systematically apply the general framework outlined in Section
2.1 to analyzing the time efficiency of nonrecursive algorithms. Let us start with
a very simple example that demonstrates all the principal steps typically taken in
analyzing such algorithms.

EXAMPLE 1 Consider the problem of finding the value of the largest element
in a list of n numbers. For simplicity, we assume that the list is implemented as
an array. The following is pseudocode of a standard algorithm for solving the
problem.

ALGORITHM MaxElement(A[0..n − 1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n − 1] of real numbers
//Output: The value of the largest element in A

maxval ← A[0]
for i ← 1 to n − 1 do

if A[i] > maxval

maxval ← A[i]
return maxval

The obvious measure of an input’s size here is the number of elements in the
array, i.e., n. The operations that are going to be executed most often are in the
algorithm’s for loop. There are two operations in the loop’s body: the comparison
A[i] > maxval and the assignment maxval ← A[i]. Which of these two operations
should we consider basic? Since the comparison is executed on each repetition
of the loop and the assignment is not, we should consider the comparison to be
the algorithm’s basic operation. Note that the number of comparisons will be the
same for all arrays of size n; therefore, in terms of this metric, there is no need to
distinguish among the worst, average, and best cases here.
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Let us denote C(n) the number of times this comparison is executed and try
to find a formula expressing it as a function of size n. The algorithm makes one
comparison on each execution of the loop, which is repeated for each value of the
loop’s variable i within the bounds 1 and n − 1, inclusive. Therefore, we get the
following sum for C(n):

C(n) =
n−1∑
i=1

1.

This is an easy sum to compute because it is nothing other than 1 repeated n − 1
times. Thus,

C(n) =
n−1∑
i=1

1 = n − 1 ∈ �(n).

Here is a general plan to follow in analyzing nonrecursive algorithms.

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation. (As a rule, it is located in the inner-

most loop.)
3. Check whether the number of times the basic operation is executed depends

only on the size of an input. If it also depends on some additional property,
the worst-case, average-case, and, if necessary, best-case efficiencies have to
be investigated separately.

4. Set up a sum expressing the number of times the algorithm’s basic operation
is executed.4

5. Using standard formulas and rules of sum manipulation, either find a closed-
form formula for the count or, at the very least, establish its order of growth.

Before proceeding with further examples, you may want to review Appen-
dix A, which contains a list of summation formulas and rules that are often useful
in analysis of algorithms. In particular, we use especially frequently two basic rules
of sum manipulation

u∑
i=l

cai = c

u∑
i=l

ai, (R1)

u∑
i=l

(ai ± bi) =
u∑

i=l

ai ±
u∑

i=l

bi, (R2)

4. Sometimes, an analysis of a nonrecursive algorithm requires setting up not a sum but a recurrence
relation for the number of times its basic operation is executed. Using recurrence relations is much
more typical for analyzing recursive algorithms (see Section 2.4).
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and two summation formulas

u∑
i=l

1 = u − l + 1 where l ≤ u are some lower and upper integer limits, (S1)

n∑
i=0

i =
n∑

i=1

i = 1 + 2 + . . . + n = n(n + 1)
2

≈ 1
2
n2 ∈ �(n2). (S2)

Note that the formula
∑n−1

i=1 1 = n − 1, which we used in Example 1, is a special
case of formula (S1) for l = 1 and u = n − 1.

EXAMPLE 2 Consider the element uniqueness problem: check whether all the
elements in a given array of n elements are distinct. This problem can be solved
by the following straightforward algorithm.

ALGORITHM UniqueElements(A[0..n − 1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n − 1]
//Output: Returns “true” if all the elements in A are distinct
// and “false” otherwise
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do
if A[i] = A[j ] return false

return true

The natural measure of the input’s size here is again n, the number of elements
in the array. Since the innermost loop contains a single operation (the comparison
of two elements), we should consider it as the algorithm’s basic operation. Note,
however, that the number of element comparisons depends not only on n but also
on whether there are equal elements in the array and, if there are, which array
positions they occupy. We will limit our investigation to the worst case only.

By definition, the worst case input is an array for which the number of element
comparisons Cworst(n) is the largest among all arrays of size n. An inspection of
the innermost loop reveals that there are two kinds of worst-case inputs—inputs
for which the algorithm does not exit the loop prematurely: arrays with no equal
elements and arrays in which the last two elements are the only pair of equal
elements. For such inputs, one comparison is made for each repetition of the
innermost loop, i.e., for each value of the loop variable j between its limits i + 1
and n − 1; this is repeated for each value of the outer loop, i.e., for each value of
the loop variable i between its limits 0 and n − 2. Accordingly, we get



64 Fundamentals of the Analysis of Algorithm Efficiency

Cworst(n) =
n−2∑
i=0

n−1∑
j=i+1

1 =
n−2∑
i=0

[(n − 1) − (i + 1) + 1] =
n−2∑
i=0

(n − 1 − i)

=
n−2∑
i=0

(n − 1) −
n−2∑
i=0

i = (n − 1)
n−2∑
i=0

1 − (n − 2)(n − 1)
2

= (n − 1)2 − (n − 2)(n − 1)
2

= (n − 1)n
2

≈ 1
2
n2 ∈ �(n2).

We also could have computed the sum
∑n−2

i=0 (n − 1 − i) faster as follows:

n−2∑
i=0

(n − 1 − i) = (n − 1) + (n − 2) + . . . + 1 = (n − 1)n
2

,

where the last equality is obtained by applying summation formula (S2). Note
that this result was perfectly predictable: in the worst case, the algorithm needs to
compare all n(n − 1)/2 distinct pairs of its n elements.

EXAMPLE 3 Given two n × n matrices A and B, find the time efficiency of the
definition-based algorithm for computing their product C = AB. By definition, C

is an n × n matrix whose elements are computed as the scalar (dot) products of
the rows of matrix A and the columns of matrix B:

A B C

col. j

C i, j[ ]row i
* =

where C[i, j ] = A[i, 0]B[0, j ] + . . . + A[i, k]B[k, j ] + . . . + A[i, n − 1]B[n − 1, j ]
for every pair of indices 0 ≤ i, j ≤ n − 1.

ALGORITHM MatrixMultiplication(A[0..n − 1, 0..n − 1], B[0..n − 1, 0..n − 1])

//Multiplies two square matrices of order n by the definition-based algorithm
//Input: Two n × n matrices A and B

//Output: Matrix C = AB

for i ← 0 to n − 1 do
for j ← 0 to n − 1 do

C[i, j ] ← 0.0
for k ← 0 to n − 1 do

C[i, j ] ← C[i, j ] + A[i, k] ∗ B[k, j ]
return C
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We measure an input’s size by matrix order n. There are two arithmetical
operations in the innermost loop here—multiplication and addition—that, in
principle, can compete for designation as the algorithm’s basic operation. Actually,
we do not have to choose between them, because on each repetition of the
innermost loop each of the two is executed exactly once. So by counting one
we automatically count the other. Still, following a well-established tradition, we
consider multiplication as the basic operation (see Section 2.1). Let us set up a sum
for the total number of multiplications M(n) executed by the algorithm. (Since this
count depends only on the size of the input matrices, we do not have to investigate
the worst-case, average-case, and best-case efficiencies separately.)

Obviously, there is just one multiplication executed on each repetition of the
algorithm’s innermost loop, which is governed by the variable k ranging from the
lower bound 0 to the upper bound n − 1. Therefore, the number of multiplications
made for every pair of specific values of variables i and j is

n−1∑
k=0

1,

and the total number of multiplications M(n) is expressed by the following
triple sum:

M(n) =
n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

1.

Now, we can compute this sum by using formula (S1) and rule (R1) given
above. Starting with the innermost sum

∑n−1
k=0 1, which is equal to n (why?), we get

M(n) =
n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

1 =
n−1∑
i=0

n−1∑
j=0

n =
n−1∑
i=0

n2 = n3.

This example is simple enough so that we could get this result without all
the summation machinations. How? The algorithm computes n2 elements of the
product matrix. Each of the product’s elements is computed as the scalar (dot)
product of an n-element row of the first matrix and an n-element column of the
second matrix, which takes n multiplications. So the total number of multiplica-
tions is n . n2 = n3. (It is this kind of reasoning that we expected you to employ
when answering this question in Problem 2 of Exercises 2.1.)

If we now want to estimate the running time of the algorithm on a particular
machine, we can do it by the product

T (n) ≈ cmM(n) = cmn3,

where cm is the time of one multiplication on the machine in question. We would
get a more accurate estimate if we took into account the time spent on the
additions, too:

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3,
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where ca is the time of one addition. Note that the estimates differ only by their
multiplicative constants and not by their order of growth.

You should not have the erroneous impression that the plan outlined above
always succeeds in analyzing a nonrecursive algorithm. An irregular change in a
loop variable, a sum too complicated to analyze, and the difficulties intrinsic to
the average case analysis are just some of the obstacles that can prove to be insur-
mountable. These caveats notwithstanding, the plan does work for many simple
nonrecursive algorithms, as you will see throughout the subsequent chapters of
the book.

As a last example, let us consider an algorithm in which the loop’s variable
changes in a different manner from that of the previous examples.

EXAMPLE 4 The following algorithm finds the number of binary digits in the
binary representation of a positive decimal integer.

ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
count ← 1
while n > 1 do

count ← count + 1
n ← �n/2�

return count

First, notice that the most frequently executed operation here is not inside the
while loop but rather the comparison n > 1 that determines whether the loop’s
body will be executed. Since the number of times the comparison will be executed
is larger than the number of repetitions of the loop’s body by exactly 1, the choice
is not that important.

A more significant feature of this example is the fact that the loop variable
takes on only a few values between its lower and upper limits; therefore, we
have to use an alternative way of computing the number of times the loop is
executed. Since the value of n is about halved on each repetition of the loop,
the answer should be about log2 n. The exact formula for the number of times
the comparison n > 1 will be executed is actually �log2 n� + 1—the number of bits
in the binary representation of n according to formula (2.1). We could also get
this answer by applying the analysis technique based on recurrence relations; we
discuss this technique in the next section because it is more pertinent to the analysis
of recursive algorithms.
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Exercises 2.3

1. Compute the following sums.
a. 1 + 3 + 5 + 7 + . . . + 999

b. 2 + 4 + 8 + 16 + . . . + 1024
c.
∑n+1

i=3 1 d.
∑n+1

i=3 i e.
∑n−1

i=0 i(i + 1)

f.
∑n

j=1 3j+1 g.
∑n

i=1
∑n

j=1 ij h.
∑n

i=1 1/i(i + 1)

2. Find the order of growth of the following sums. Use the �(g(n)) notation with
the simplest function g(n) possible.
a.

∑n−1
i=0 (i2+1)2 b.

∑n−1
i=2 lg i2

c.
∑n

i=1(i + 1)2i−1 d.
∑n−1

i=0
∑i−1

j=0(i + j)

3. The sample variance of n measurements x1, . . . , xn can be computed as either∑n
i=1(xi − x̄)2

n − 1
where x̄ =

∑n
i=1 xi

n

or ∑n
i=1 x2

i
− (

∑n
i=1 xi)

2/n

n − 1
.

Find and compare the number of divisions, multiplications, and additions/
subtractions (additions and subtractions are usually bunched together) that
are required for computing the variance according to each of these formulas.

4. Consider the following algorithm.

ALGORITHM Mystery(n)

//Input: A nonnegative integer n

S ← 0
for i ← 1 to n do

S ← S + i ∗ i

return S

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

d. What is the efficiency class of this algorithm?

e. Suggest an improvement, or a better algorithm altogether, and indicate its
efficiency class. If you cannot do it, try to prove that, in fact, it cannot be
done.
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5. Consider the following algorithm.

ALGORITHM Secret(A[0..n − 1])

//Input: An array A[0..n − 1] of n real numbers
minval ← A[0]; maxval ← A[0]
for i ← 1 to n − 1 do

if A[i] < minval
minval ← A[i]

if A[i] > maxval
maxval ← A[i]

return maxval − minval

Answer questions (a)–(e) of Problem 4 about this algorithm.

6. Consider the following algorithm.

ALGORITHM Enigma(A[0..n − 1, 0..n − 1])

//Input: A matrix A[0..n − 1, 0..n − 1] of real numbers
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do
if A[i, j ] �= A[j, i]

return false
return true

Answer questions (a)–(e) of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see Ex-
ample 3) by reducing the number of additions made by the algorithm. What
effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all
the doors are toggled in the locker doors puzzle (Problem 12 in Exercises 1.1).

9. Prove the formula

n∑
i=1

i = 1 + 2 + . . . + n = n(n + 1)
2

either by mathematical induction or by following the insight of a 10-year-old
school boy named Carl Friedrich Gauss (1777–1855) who grew up to become
one of the greatest mathematicians of all times.



2.3 Mathematical Analysis of Nonrecursive Algorithms 69

10. Mental arithmetic A 10×10 table is filled with repeating numbers on its
diagonals as shown below. Calculate the total sum of the table’s numbers in
your head (after [Cra07, Question 1.33]).

1 2 3

2 3

3

…

…

… …

9 10

9 10 11

9 10 11

17

17 18

17 18 19

9 10 11

9 10 11

9 10 11

9 10 11

9 10 11

9 10 11

10 11

11. Consider the following version of an important algorithm that we will study
later in the book.

ALGORITHM GE(A[0..n − 1, 0..n])

//Input: An n × (n + 1) matrix A[0..n − 1, 0..n] of real numbers
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do
for k ← i to n do

A[j, k] ← A[j, k] − A[i, k] ∗ A[j, i] / A[i, i]

a. Find the time efficiency class of this algorithm.

b. What glaring inefficiency does this pseudocode contain and how can it be
eliminated to speed the algorithm up?

12. von Neumann’s neighborhood Consider the algorithm that starts with a
single square and on each of its n iterations adds new squares all around the
outside. How many one-by-one squares are there after n iterations? [Gar99]
(In the parlance of cellular automata theory, the answer is the number of cells
in the von Neumann neighborhood of range n.) The results for n = 0, 1, and
2 are illustrated below.
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n = 0 n = 1 n = 2

13. Page numbering Find the total number of decimal digits needed for num-
bering pages in a book of 1000 pages. Assume that the pages are numbered
consecutively starting with 1.

2.4 Mathematical Analysis of Recursive Algorithms

In this section, we will see how to apply the general framework for analysis
of algorithms to recursive algorithms. We start with an example often used to
introduce novices to the idea of a recursive algorithm.

EXAMPLE 1 Compute the factorial function F(n) = n! for an arbitrary nonneg-
ative integer n. Since

n!= 1 . . . . . (n − 1) . n = (n − 1)! . n for n ≥ 1

and 0! = 1 by definition, we can compute F(n) = F(n − 1) . n with the following
recursive algorithm.

ALGORITHM F(n)

//Computes n! recursively
//Input: A nonnegative integer n

//Output: The value of n!
if n = 0 return 1
else return F(n − 1) ∗ n

For simplicity, we consider n itself as an indicator of this algorithm’s input size
(rather than the number of bits in its binary expansion). The basic operation of the
algorithm is multiplication,5 whose number of executions we denote M(n). Since
the function F(n) is computed according to the formula

F(n) = F(n − 1) . n for n > 0,

5. Alternatively, we could count the number of times the comparison n = 0 is executed, which is the same
as counting the total number of calls made by the algorithm (see Problem 2 in this section’s exercises).
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the number of multiplications M(n) needed to compute it must satisfy the equality

M(n) = M(n − 1)
to compute

F(n−1)

+ 1
to multiply

F(n−1) by n

for n > 0.

Indeed, M(n − 1) multiplications are spent to compute F(n − 1), and one more
multiplication is needed to multiply the result by n.

The last equation defines the sequence M(n) that we need to find. This equa-
tion defines M(n) not explicitly, i.e., as a function of n, but implicitly as a function
of its value at another point, namely n − 1. Such equations are called recurrence
relations or, for brevity, recurrences. Recurrence relations play an important role
not only in analysis of algorithms but also in some areas of applied mathematics.
They are usually studied in detail in courses on discrete mathematics or discrete
structures; a very brief tutorial on them is provided in Appendix B. Our goal now
is to solve the recurrence relation M(n) = M(n − 1) + 1, i.e., to find an explicit
formula for M(n) in terms of n only.

Note, however, that there is not one but infinitely many sequences that satisfy
this recurrence. (Can you give examples of, say, two of them?) To determine a
solution uniquely, we need an initial condition that tells us the value with which
the sequence starts. We can obtain this value by inspecting the condition that
makes the algorithm stop its recursive calls:

if n = 0 return 1.

This tells us two things. First, since the calls stop when n = 0, the smallest value
of n for which this algorithm is executed and hence M(n) defined is 0. Second, by
inspecting the pseudocode’s exiting line, we can see that when n = 0, the algorithm
performs no multiplications. Therefore, the initial condition we are after is

M(0) = 0.

the calls stop when n = 0 no multiplications when n = 0

Thus, we succeeded in setting up the recurrence relation and initial condition
for the algorithm’s number of multiplications M(n):

M(n) = M(n − 1) + 1 for n > 0, (2.2)
M(0) = 0.

Before we embark on a discussion of how to solve this recurrence, let us
pause to reiterate an important point. We are dealing here with two recursively
defined functions. The first is the factorial function F(n) itself; it is defined by the
recurrence

F(n) = F(n − 1) . n for every n > 0,

F (0) = 1.

The second is the number of multiplications M(n) needed to compute F(n) by the
recursive algorithm whose pseudocode was given at the beginning of the section.
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As we just showed, M(n) is defined by recurrence (2.2). And it is recurrence (2.2)
that we need to solve now.

Though it is not difficult to “guess” the solution here (what sequence starts
with 0 when n = 0 and increases by 1 on each step?), it will be more useful to
arrive at it in a systematic fashion. From the several techniques available for
solving recurrence relations, we use what can be called the method of backward
substitutions. The method’s idea (and the reason for the name) is immediately
clear from the way it applies to solving our particular recurrence:

M(n) = M(n − 1) + 1 substitute M(n − 1) = M(n − 2) + 1

= [M(n − 2) + 1] + 1 = M(n − 2) + 2 substitute M(n − 2) = M(n − 3) + 1

= [M(n − 3) + 1] + 2 = M(n − 3) + 3.

After inspecting the first three lines, we see an emerging pattern, which makes it
possible to predict not only the next line (what would it be?) but also a general
formula for the pattern: M(n) = M(n − i) + i. Strictly speaking, the correctness of
this formula should be proved by mathematical induction, but it is easier to get to
the solution as follows and then verify its correctness.

What remains to be done is to take advantage of the initial condition given.
Since it is specified for n = 0, we have to substitute i = n in the pattern’s formula
to get the ultimate result of our backward substitutions:

M(n) = M(n − 1) + 1 = . . . = M(n − i) + i = . . . = M(n − n) + n = n.

You should not be disappointed after exerting so much effort to get this
“obvious” answer. The benefits of the method illustrated in this simple example
will become clear very soon, when we have to solve more difficult recurrences.
Also, note that the simple iterative algorithm that accumulates the product of n

consecutive integers requires the same number of multiplications, and it does so
without the overhead of time and space used for maintaining the recursion’s stack.

The issue of time efficiency is actually not that important for the problem of
computing n!, however. As we saw in Section 2.1, the function’s values get so large
so fast that we can realistically compute exact values of n! only for very small n’s.
Again, we use this example just as a simple and convenient vehicle to introduce
the standard approach to analyzing recursive algorithms.

Generalizing our experience with investigating the recursive algorithm for
computing n!, we can now outline a general plan for investigating recursive algo-
rithms.

General Plan for Analyzing the Time Efficiency of Recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.
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3. Check whether the number of times the basic operation is executed can vary
on different inputs of the same size; if it can, the worst-case, average-case, and
best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the
number of times the basic operation is executed.

5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

EXAMPLE 2 As our next example, we consider another educational workhorse
of recursive algorithms: the Tower of Hanoi puzzle. In this puzzle, we (or mythical
monks, if you do not like to move disks) have n disks of different sizes that can
slide onto any of three pegs. Initially, all the disks are on the first peg in order of
size, the largest on the bottom and the smallest on top. The goal is to move all the
disks to the third peg, using the second one as an auxiliary, if necessary. We can
move only one disk at a time, and it is forbidden to place a larger disk on top of a
smaller one.

The problem has an elegant recursive solution, which is illustrated in Fig-
ure 2.4. To move n > 1 disks from peg 1 to peg 3 (with peg 2 as auxiliary), we first
move recursively n − 1 disks from peg 1 to peg 2 (with peg 3 as auxiliary), then
move the largest disk directly from peg 1 to peg 3, and, finally, move recursively
n − 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary). Of course, if n = 1, we
simply move the single disk directly from the source peg to the destination peg.

1 3

2

FIGURE 2.4 Recursive solution to the Tower of Hanoi puzzle.
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Let us apply the general plan outlined above to the Tower of Hanoi problem.
The number of disks n is the obvious choice for the input’s size indicator, and so is
moving one disk as the algorithm’s basic operation. Clearly, the number of moves
M(n) depends on n only, and we get the following recurrence equation for it:

M(n) = M(n − 1) + 1 + M(n − 1) for n > 1.

With the obvious initial condition M(1) = 1, we have the following recurrence
relation for the number of moves M(n):

M(n) = 2M(n − 1) + 1 for n > 1, (2.3)
M(1) = 1.

We solve this recurrence by the same method of backward substitutions:

M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1

= 2[2M(n − 2) + 1] + 1 = 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 3) + 1

= 22[2M(n − 3) + 1] + 2 + 1 = 23M(n − 3) + 22 + 2 + 1.

The pattern of the first three sums on the left suggests that the next one will be
24M(n − 4) + 23 + 22 + 2 + 1, and generally, after i substitutions, we get

M(n) = 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1 = 2iM(n − i) + 2i − 1.

Since the initial condition is specified for n = 1, which is achieved for i = n − 1, we
get the following formula for the solution to recurrence (2.3):

M(n) = 2n−1M(n − (n − 1)) + 2n−1 − 1

= 2n−1M(1) + 2n−1 − 1 = 2n−1 + 2n−1 − 1 = 2n − 1.

Thus, we have an exponential algorithm, which will run for an unimaginably
long time even for moderate values of n (see Problem 5 in this section’s exercises).
This is not due to the fact that this particular algorithm is poor; in fact, it is not
difficult to prove that this is the most efficient algorithm possible for this problem.
It is the problem’s intrinsic difficulty that makes it so computationally hard. Still,
this example makes an important general point:

One should be careful with recursive algorithms because their succinctness
may mask their inefficiency.

When a recursive algorithm makes more than a single call to itself, it can be
useful for analysis purposes to construct a tree of its recursive calls. In this tree,
nodes correspond to recursive calls, and we can label them with the value of the
parameter (or, more generally, parameters) of the calls. For the Tower of Hanoi
example, the tree is given in Figure 2.5. By counting the number of nodes in the
tree, we can get the total number of calls made by the Tower of Hanoi algorithm:

C(n) =
n−1∑
l=0

2l (where l is the level in the tree in Figure 2.5) = 2n − 1.
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n

n – 1 n – 1

n – 2 n – 2 n – 2 n – 2

2 2

1 1

2

1 1

2

1 1 1 1

FIGURE 2.5 Tree of recursive calls made by the recursive algorithm for the Tower of
Hanoi puzzle.

The number agrees, as it should, with the move count obtained earlier.

EXAMPLE 3 As our next example, we investigate a recursive version of the
algorithm discussed at the end of Section 2.3.

ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation
if n = 1 return 1
else return BinRec(�n/2�) + 1

Let us set up a recurrence and an initial condition for the number of addi-
tions A(n) made by the algorithm. The number of additions made in computing
BinRec(�n/2�) is A(�n/2�), plus one more addition is made by the algorithm to
increase the returned value by 1. This leads to the recurrence

A(n) = A(�n/2�) + 1 for n > 1. (2.4)

Since the recursive calls end when n is equal to 1 and there are no additions made
then, the initial condition is

A(1) = 0.

The presence of �n/2� in the function’s argument makes the method of back-
ward substitutions stumble on values of n that are not powers of 2. Therefore, the
standard approach to solving such a recurrence is to solve it only for n = 2k and
then take advantage of the theorem called the smoothness rule (see Appendix B),
which claims that under very broad assumptions the order of growth observed for
n = 2k gives a correct answer about the order of growth for all values of n. (Alter-
natively, after getting a solution for powers of 2, we can sometimes fine-tune this
solution to get a formula valid for an arbitrary n.) So let us apply this recipe to our
recurrence, which for n = 2k takes the form
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A(2k) = A(2k−1) + 1 for k > 0,

A(20) = 0.

Now backward substitutions encounter no problems:

A(2k) = A(2k−1) + 1 substitute A(2k−1) = A(2k−2) + 1

= [A(2k−2) + 1] + 1 = A(2k−2) + 2 substitute A(2k−2) = A(2k−3) + 1

= [A(2k−3) + 1] + 2 = A(2k−3) + 3 . . .
. . .

= A(2k−i) + i
. . .

= A(2k−k) + k.

Thus, we end up with

A(2k) = A(1) + k = k,

or, after returning to the original variable n = 2k and hence k = log2 n,

A(n) = log2 n ∈ �(log n).

In fact, one can prove (Problem 7 in this section’s exercises) that the exact solution
for an arbitrary value of n is given by just a slightly more refined formula A(n) =
�log2 n�.

This section provides an introduction to the analysis of recursive algorithms.
These techniques will be used throughout the book and expanded further as
necessary. In the next section, we discuss the Fibonacci numbers; their analysis
involves more difficult recurrence relations to be solved by a method different
from backward substitutions.

Exercises 2.4

1. Solve the following recurrence relations.
a. x(n) = x(n − 1) + 5 for n > 1, x(1) = 0

b. x(n) = 3x(n − 1) for n > 1, x(1) = 4

c. x(n) = x(n − 1) + n for n > 0, x(0) = 0

d. x(n) = x(n/2) + n for n > 1, x(1) = 1 (solve for n = 2k)

e. x(n) = x(n/3) + 1 for n > 1, x(1) = 1 (solve for n = 3k)

2. Set up and solve a recurrence relation for the number of calls made by F(n),

the recursive algorithm for computing n!.

3. Consider the following recursive algorithm for computing the sum of the first
n cubes: S(n) = 13 + 23 + . . . + n3.
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ALGORITHM S(n)

//Input: A positive integer n

//Output: The sum of the first n cubes
if n = 1 return 1
else return S(n − 1) + n ∗ n ∗ n

a. Set up and solve a recurrence relation for the number of times the algo-
rithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward nonrecursive
algorithm for computing this sum?

4. Consider the following recursive algorithm.

ALGORITHM Q(n)

//Input: A positive integer n

if n = 1 return 1
else return Q(n − 1) + 2 ∗ n − 1

a. Set up a recurrence relation for this function’s values and solve it to deter-
mine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made by this
algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions made
by this algorithm and solve it.

5. Tower of Hanoi
a. In the original version of the Tower of Hanoi puzzle, as it was published in

the 1890s by Édouard Lucas, a French mathematician, the world will end
after 64 disks have been moved from a mystical Tower of Brahma. Estimate
the number of years it will take if monks could move one disk per minute.
(Assume that monks do not eat, sleep, or die.)

b. How many moves are made by the ith largest disk (1 ≤ i ≤ n) in this
algorithm?

c. Find a nonrecursive algorithm for the Tower of Hanoi puzzle and imple-
ment it in the language of your choice.

6. Restricted Tower of Hanoi Consider the version of the Tower of Hanoi
puzzle in which n disks have to be moved from peg A to peg C using peg
B so that any move should either place a disk on peg B or move a disk from
that peg. (Of course, the prohibition of placing a larger disk on top of a smaller
one remains in place, too.) Design a recursive algorithm for this problem and
find the number of moves made by it.
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7. a. Prove that the exact number of additions made by the recursive algorithm
BinRec(n) for an arbitrary positive decimal integer n is �log2 n�.

b. Set up a recurrence relation for the number of additions made by the
nonrecursive version of this algorithm (see Section 2.3, Example 4) and
solve it.

8. a. Design a recursive algorithm for computing 2n for any nonnegative integer
n that is based on the formula 2n = 2n−1 + 2n−1.

b. Set up a recurrence relation for the number of additions made by the
algorithm and solve it.

c. Draw a tree of recursive calls for this algorithm and count the number of
calls made by the algorithm.

d. Is it a good algorithm for solving this problem?

9. Consider the following recursive algorithm.

ALGORITHM Riddle(A[0..n − 1])

//Input: An array A[0..n − 1] of real numbers
if n = 1 return A[0]
else temp ← Riddle(A[0..n − 2])

if temp ≤ A[n − 1] return temp
else return A[n − 1]

a. What does this algorithm compute?

b. Set up a recurrence relation for the algorithm’s basic operation count and
solve it.

10. Consider the following algorithm to check whether a graph defined by its
adjacency matrix is complete.

ALGORITHM GraphComplete(A[0..n − 1, 0..n − 1])

//Input: Adjacency matrix A[0..n − 1, 0..n − 1]) of an undirected graph G

//Output: 1 (true) if G is complete and 0 (false) otherwise
if n = 1 return 1 //one-vertex graph is complete by definition
else

if not GraphComplete(A[0..n − 2, 0..n − 2]) return 0
else for j ← 0 to n − 2 do

if A[n − 1, j ] = 0 return 0
return 1

What is the algorithm’s efficiency class in the worst case?

11. The determinant of an n × n matrix
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A =

⎡
⎢⎢⎣

a0 0 . . . a0 n−1
a1 0 . . . a1 n−1...

...
an−1 0 . . . an−1 n−1

⎤
⎥⎥⎦ ,

denoted det A, can be defined as a00 for n = 1 and, for n > 1, by the recursive
formula

det A =
n−1∑
j=0

sja0 j det Aj,

where sj is +1 if j is even and −1 if j is odd, a0 j is the element in row 0 and
column j , and Aj is the (n − 1) × (n − 1) matrix obtained from matrix A by
deleting its row 0 and column j .
a. Set up a recurrence relation for the number of multiplications made by the

algorithm implementing this recursive definition.

b. Without solving the recurrence, what can you say about the solution’s order
of growth as compared to n!?

12. von Neumann’s neighborhood revisited Find the number of cells in the von
Neumann neighborhood of range n (Problem 12 in Exercises 2.3) by setting
up and solving a recurrence relation.

13. Frying hamburgers There are n hamburgers to be fried on a small grill that
can hold only two hamburgers at a time. Each hamburger has to be fried
on both sides; frying one side of a hamburger takes 1 minute, regardless of
whether one or two hamburgers are fried at the same time. Consider the
following recursive algorithm for executing this task in the minimum amount
of time. If n ≤ 2, fry the hamburger or the two hamburgers together on each
side. If n > 2, fry any two hamburgers together on each side and then apply
the same procedure recursively to the remaining n − 2 hamburgers.
a. Set up and solve the recurrence for the amount of time this algorithm needs

to fry n hamburgers.

b. Explain why this algorithm does not fry the hamburgers in the minimum
amount of time for all n > 0.

c. Give a correct recursive algorithm that executes the task in the minimum
amount of time.

14. Celebrity problem A celebrity among a group of n people is a person who
knows nobody but is known by everybody else. The task is to identify a
celebrity by only asking questions to people of the form “Do you know
him/her?” Design an efficient algorithm to identify a celebrity or determine
that the group has no such person. How many questions does your algorithm
need in the worst case?
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2.5 Example: Computing the nth Fibonacci Number

In this section, we consider the Fibonacci numbers, a famous sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . (2.5)

that can be defined by the simple recurrence

F(n) = F(n − 1) + F(n − 2) for n > 1 (2.6)

and two initial conditions

F(0) = 0, F (1) = 1. (2.7)

The Fibonacci numbers were introduced by Leonardo Fibonacci in 1202 as
a solution to a problem about the size of a rabbit population (Problem 2 in this
section’s exercises). Many more examples of Fibonacci-like numbers have since
been discovered in the natural world, and they have even been used in predicting
the prices of stocks and commodities. There are some interesting applications of
the Fibonacci numbers in computer science as well. For example, worst-case inputs
for Euclid’s algorithm discussed in Section 1.1 happen to be consecutive elements
of the Fibonacci sequence. In this section, we briefly consider algorithms for
computing the nth element of this sequence. Among other benefits, the discussion
will provide us with an opportunity to introduce another method for solving
recurrence relations useful for analysis of recursive algorithms.

To start, let us get an explicit formula for F(n). If we try to apply the method
of backward substitutions to solve recurrence (2.6), we will fail to get an easily
discernible pattern. Instead, we can take advantage of a theorem that describes
solutions to a homogeneous second-order linear recurrence with constant co-
efficients

ax(n) + bx(n − 1) + cx(n − 2) = 0, (2.8)

where a, b, and c are some fixed real numbers (a �= 0) called the coefficients of
the recurrence and x(n) is the generic term of an unknown sequence to be found.
Applying this theorem to our recurrence with the initial conditions given—see
Appendix B—we obtain the formula

F(n) = 1√
5
(φn − φ̂n), (2.9)

where φ = (1 + √
5)/2 ≈ 1.61803 and φ̂ = −1/φ ≈ −0.61803.6 It is hard to believe

that formula (2.9), which includes arbitrary integer powers of irrational numbers,
yields nothing else but all the elements of Fibonacci sequence (2.5), but it does!

One of the benefits of formula (2.9) is that it immediately implies that F(n)

grows exponentially (remember Fibonacci’s rabbits?), i.e., F(n) ∈ �(φn). This

6. Constant φ is known as the golden ratio. Since antiquity, it has been considered the most pleasing ratio
of a rectangle’s two sides to the human eye and might have been consciously used by ancient architects
and sculptors.
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follows from the observation that φ̂ is a fraction between −1 and 0, and hence
φ̂n gets infinitely small as n goes to infinity. In fact, one can prove that the impact
of the second term 1√

5
φ̂n on the value of F(n) can be obtained by rounding off the

value of the first term to the nearest integer. In other words, for every nonnegative
integer n,

F (n) = 1√
5
φn rounded to the nearest integer. (2.10)

In the algorithms that follow, we consider, for the sake of simplicity, such oper-
ations as additions and multiplications at unit cost. Since the Fibonacci numbers
grow infinitely large (and grow very rapidly), a more detailed analysis than the
one offered here is warranted. In fact, it is the size of the numbers rather than a
time-efficient method for computing them that should be of primary concern here.
Still, these caveats notwithstanding, the algorithms we outline and their analysis
provide useful examples for a student of the design and analysis of algorithms.

To begin with, we can use recurrence (2.6) and initial conditions (2.7) for the
obvious recursive algorithm for computing F(n).

ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition
//Input: A nonnegative integer n

//Output: The nth Fibonacci number
if n ≤ 1 return n

else return F(n − 1) + F(n − 2)

Before embarking on its formal analysis, can you tell whether this is an effi-
cient algorithm? Well, we need to do a formal analysis anyway. The algorithm’s ba-
sic operation is clearly addition, so let A(n) be the number of additions performed
by the algorithm in computing F(n). Then the numbers of additions needed for
computing F(n − 1) and F(n − 2) are A(n − 1) and A(n − 2), respectively, and
the algorithm needs one more addition to compute their sum. Thus, we get the
following recurrence for A(n):

A(n) = A(n − 1) + A(n − 2) + 1 for n > 1, (2.11)
A(0) = 0, A(1) = 0.

The recurrence A(n) − A(n − 1) − A(n − 2) = 1 is quite similar to recurrence
F(n) − F(n − 1) − F(n − 2) = 0, but its right-hand side is not equal to zero. Such
recurrences are called inhomogeneous. There are general techniques for solving
inhomogeneous recurrences (see Appendix B or any textbook on discrete mathe-
matics), but for this particular recurrence, a special trick leads to a faster solution.
We can reduce our inhomogeneous recurrence to a homogeneous one by rewriting
it as

[A(n) + 1] − [A(n − 1) + 1] − [A(n − 2) + 1] = 0

and substituting B(n) = A(n) + 1:
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B(n) − B(n − 1) − B(n − 2) = 0,

B(0) = 1, B(1) = 1.

This homogeneous recurrence can be solved exactly in the same manner as recur-
rence (2.6) was solved to find an explicit formula for F(n). But it can actually be
avoided by noting that B(n) is, in fact, the same recurrence as F(n) except that it
starts with two 1’s and thus runs one step ahead of F(n). So B(n) = F(n + 1), and

A(n) = B(n) − 1 = F(n + 1) − 1 = 1√
5
(φn+1 − φ̂n+1) − 1.

Hence, A(n) ∈ �(φn), and if we measure the size of n by the number of bits
b = �log2 n� + 1 in its binary representation, the efficiency class will be even worse,
namely, doubly exponential: A(b) ∈ �(φ2b

).

The poor efficiency class of the algorithm could be anticipated by the nature of
recurrence (2.11). Indeed, it contains two recursive calls with the sizes of smaller
instances only slightly smaller than size n. (Have you encountered such a situation
before?) We can also see the reason behind the algorithm’s inefficiency by looking
at a recursive tree of calls tracing the algorithm’s execution. An example of such
a tree for n = 5 is given in Figure 2.6. Note that the same values of the function
are being evaluated here again and again, which is clearly extremely inefficient.

We can obtain a much faster algorithm by simply computing the successive
elements of the Fibonacci sequence iteratively, as is done in the following algo-
rithm.

ALGORITHM Fib(n)

//Computes the nth Fibonacci number iteratively by using its definition
//Input: A nonnegative integer n

//Output: The nth Fibonacci number
F [0] ← 0; F [1] ← 1
for i ← 2 to n do

F [i] ← F [i − 1] + F [i − 2]
return F [n]

F(3)

F(4)

F(5)

F(3)

F(1)F(2)F(2)

F(2) F(1) F(1) F(1)F(0) F(0)

F(1) F(0)

FIGURE 2.6 Tree of recursive calls for computing the 5th Fibonacci number by the
definition-based algorithm.
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This algorithm clearly makes n − 1 additions. Hence, it is linear as a function
of n and “only” exponential as a function of the number of bits b in n’s binary
representation. Note that using an extra array for storing all the preceding ele-
ments of the Fibonacci sequence can be avoided: storing just two values is neces-
sary to accomplish the task (see Problem 8 in this section’s exercises).

The third alternative for computing the nth Fibonacci number lies in using
formula (2.10). The efficiency of the algorithm will obviously be determined by
the efficiency of an exponentiation algorithm used for computing φn. If it is done
by simply multiplying φ by itself n − 1 times, the algorithm will be in �(n) = �(2b).

There are faster algorithms for the exponentiation problem. For example, we
will discuss �(log n) = �(b) algorithms for this problem in Chapters 4 and 6.
Note also that special care should be exercised in implementing this approach
to computing the nth Fibonacci number. Since all its intermediate results are
irrational numbers, we would have to make sure that their approximations in the
computer are accurate enough so that the final round-off yields a correct result.

Finally, there exists a �(log n) algorithm for computing the nth Fibonacci
number that manipulates only integers. It is based on the equality[

F(n − 1) F (n)

F (n) F (n + 1)

]
=
[

0 1
1 1

]n

for n ≥ 1

and an efficient way of computing matrix powers.

Exercises 2.5

1. Find a Web site dedicated to applications of the Fibonacci numbers and
study it.

2. Fibonacci’s rabbits problem A man put a pair of rabbits in a place sur-
rounded by a wall. How many pairs of rabbits will be there in a year if the
initial pair of rabbits (male and female) are newborn and all rabbit pairs are
not fertile during their first month of life but thereafter give birth to one new
male/female pair at the end of every month?

3. Climbing stairs Find the number of different ways to climb an n-stair stair-
case if each step is either one or two stairs. For example, a 3-stair staircase can
be climbed three ways: 1-1-1, 1-2, and 2-1.

4. How many even numbers are there among the first n Fibonacci numbers, i.e.,
among the numbers F(0), F (1), . . . , F (n − 1)? Give a closed-form formula
valid for every n > 0.

5. Check by direct substitutions that the function 1√
5
(φn − φ̂n) indeed satisfies

recurrence (2.6) and initial conditions (2.7).

6. The maximum values of the Java primitive types int and long are 231 − 1 and
263 − 1, respectively. Find the smallest n for which the nth Fibonacci number
is not going to fit in a memory allocated for
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a. the type int. b. the type long.

7. Consider the recursive definition-based algorithm for computing the nth Fi-
bonacci number F(n). Let C(n) and Z(n) be the number of times F(1) and
F(0) are computed, respectively. Prove that

a. C(n) = F(n). b. Z(n) = F(n − 1).

8. Improve algorithm Fib of the text so that it requires only �(1) space.

9. Prove the equality[
F(n − 1) F (n)

F (n) F (n + 1)

]
=
[

0 1
1 1

]n

for n ≥ 1.

10. How many modulo divisions are made by Euclid’s algorithm on two consec-
utive Fibonacci numbers F(n) and F(n − 1) as the algorithm’s input?

11. Dissecting a Fibonacci rectangle Given a rectangle whose sides are two con-
secutive Fibonacci numbers, design an algorithm to dissect it into squares with
no more than two squares being the same size. What is the time efficiency class
of your algorithm?

12. In the language of your choice, implement two algorithms for computing the
last five digits of the nth Fibonacci number that are based on (a) the recursive
definition-based algorithm F(n); (b) the iterative definition-based algorithm
Fib(n). Perform an experiment to find the largest value of n for which your
programs run under 1 minute on your computer.

2.6 Empirical Analysis of Algorithms

In Sections 2.3 and 2.4, we saw how algorithms, both nonrecursive and recursive,
can be analyzed mathematically. Though these techniques can be applied success-
fully to many simple algorithms, the power of mathematics, even when enhanced
with more advanced techniques (see [Sed96], [Pur04], [Gra94], and [Gre07]), is
far from limitless. In fact, even some seemingly simple algorithms have proved
to be very difficult to analyze with mathematical precision and certainty. As we
pointed out in Section 2.1, this is especially true for the average-case analysis.

The principal alternative to the mathematical analysis of an algorithm’s ef-
ficiency is its empirical analysis. This approach implies steps spelled out in the
following plan.

General Plan for the Empirical Analysis of Algorithm Time Efficiency

1. Understand the experiment’s purpose.
2. Decide on the efficiency metric M to be measured and the measurement unit

(an operation count vs. a time unit).
3. Decide on characteristics of the input sample (its range, size, and so on).
4. Prepare a program implementing the algorithm (or algorithms) for the exper-

imentation.
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5. Generate a sample of inputs.
6. Run the algorithm (or algorithms) on the sample’s inputs and record the data

observed.
7. Analyze the data obtained.

Let us discuss these steps one at a time. There are several different goals
one can pursue in analyzing algorithms empirically. They include checking the
accuracy of a theoretical assertion about the algorithm’s efficiency, comparing the
efficiency of several algorithms for solving the same problem or different imple-
mentations of the same algorithm, developing a hypothesis about the algorithm’s
efficiency class, and ascertaining the efficiency of the program implementing the
algorithm on a particular machine. Obviously, an experiment’s design should de-
pend on the question the experimenter seeks to answer.

In particular, the goal of the experiment should influence, if not dictate, how
the algorithm’s efficiency is to be measured. The first alternative is to insert a
counter (or counters) into a program implementing the algorithm to count the
number of times the algorithm’s basic operation is executed. This is usually a
straightforward operation; you should only be mindful of the possibility that
the basic operation is executed in several places in the program and that all its
executions need to be accounted for. As straightforward as this task usually is,
you should always test the modified program to ensure that it works correctly, in
terms of both the problem it solves and the counts it yields.

The second alternative is to time the program implementing the algorithm in
question. The easiest way to do this is to use a system’s command, such as the time
command in UNIX. Alternatively, one can measure the running time of a code
fragment by asking for the system time right before the fragment’s start (tstart) and
just after its completion (tfinish), and then computing the difference between the
two (tfinish− tstart).

7 In C and C++, you can use the function clock for this purpose;
in Java, the method currentTimeMillis() in the System class is available.

It is important to keep several facts in mind, however. First, a system’s time
is typically not very accurate, and you might get somewhat different results on
repeated runs of the same program on the same inputs. An obvious remedy is
to make several such measurements and then take their average (or the median)
as the sample’s observation point. Second, given the high speed of modern com-
puters, the running time may fail to register at all and be reported as zero. The
standard trick to overcome this obstacle is to run the program in an extra loop
many times, measure the total running time, and then divide it by the number of
the loop’s repetitions. Third, on a computer running under a time-sharing system
such as UNIX, the reported time may include the time spent by the CPU on other
programs, which obviously defeats the purpose of the experiment. Therefore, you
should take care to ask the system for the time devoted specifically to execution of

7. If the system time is given in units called “ticks,” the difference should be divided by a constant
indicating the number of ticks per time unit.
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your program. (In UNIX, this time is called the “user time,” and it is automatically
provided by the time command.)

Thus, measuring the physical running time has several disadvantages, both
principal (dependence on a particular machine being the most important of them)
and technical, not shared by counting the executions of a basic operation. On the
other hand, the physical running time provides very specific information about
an algorithm’s performance in a particular computing environment, which can
be of more importance to the experimenter than, say, the algorithm’s asymptotic
efficiency class. In addition, measuring time spent on different segments of a
program can pinpoint a bottleneck in the program’s performance that can be
missed by an abstract deliberation about the algorithm’s basic operation. Getting
such data—called profiling—is an important resource in the empirical analysis of
an algorithm’s running time; the data in question can usually be obtained from
the system tools available in most computing environments.

Whether you decide to measure the efficiency by basic operation counting or
by time clocking, you will need to decide on a sample of inputs for the experiment.
Often, the goal is to use a sample representing a “typical” input; so the challenge
is to understand what a “typical” input is. For some classes of algorithms—e.g., for
algorithms for the traveling salesman problem that we are going to discuss later in
the book—researchers have developed a set of instances they use for benchmark-
ing. But much more often than not, an input sample has to be developed by the
experimenter. Typically, you will have to make decisions about the sample size (it
is sensible to start with a relatively small sample and increase it later if necessary),
the range of instance sizes (typically neither trivially small nor excessively large),
and a procedure for generating instances in the range chosen. The instance sizes
can either adhere to some pattern (e.g., 1000, 2000, 3000, . . . , 10,000 or 500, 1000,
2000, 4000, . . . , 128,000) or be generated randomly within the range chosen.

The principal advantage of size changing according to a pattern is that its
impact is easier to analyze. For example, if a sample’s sizes are generated by
doubling, you can compute the ratios M(2n)/M(n) of the observed metric M

(the count or the time) to see whether the ratios exhibit a behavior typical of
algorithms in one of the basic efficiency classes discussed in Section 2.2. The
major disadvantage of nonrandom sizes is the possibility that the algorithm under
investigation exhibits atypical behavior on the sample chosen. For example, if all
the sizes in a sample are even and your algorithm runs much more slowly on odd-
size inputs, the empirical results will be quite misleading.

Another important issue concerning sizes in an experiment’s sample is
whether several instances of the same size should be included. If you expect the
observed metric to vary considerably on instances of the same size, it would be
probably wise to include several instances for every size in the sample. (There
are well-developed methods in statistics to help the experimenter make such de-
cisions; you will find no shortage of books on this subject.) Of course, if several
instances of the same size are included in the sample, the averages or medians of
the observed values for each size should be computed and investigated instead of
or in addition to individual sample points.
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Much more often than not, an empirical analysis requires generating random
numbers. Even if you decide to use a pattern for input sizes, you will typically
want instances themselves generated randomly. Generating random numbers on
a digital computer is known to present a difficult problem because, in principle,
the problem can be solved only approximately. This is the reason computer scien-
tists prefer to call such numbers pseudorandom. As a practical matter, the easiest
and most natural way of getting such numbers is to take advantage of a random
number generator available in computer language libraries. Typically, its output
will be a value of a (pseudo)random variable uniformly distributed in the interval
between 0 and 1. If a different (pseudo)random variable is desired, an appro-
priate transformation needs to be made. For example, if x is a continuous ran-
dom variable uniformly distributed on the interval 0 ≤ x < 1, the variable y = l+
�x(r − l)� will be uniformly distributed among the integer values between integers
l and r − 1 (l < r).

Alternatively, you can implement one of several known algorithms for gener-
ating (pseudo)random numbers. The most widely used and thoroughly studied of
such algorithms is the linear congruential method .

ALGORITHM Random(n, m, seed, a, b)

//Generates a sequence of n pseudorandom numbers according to the linear
// congruential method
//Input: A positive integer n and positive integer parameters m, seed, a, b

//Output: A sequence r1, . . . , rn of n pseudorandom integers uniformly
// distributed among integer values between 0 and m − 1
//Note: Pseudorandom numbers between 0 and 1 can be obtained
// by treating the integers generated as digits after the decimal point
r0 ← seed
for i ← 1 to n do

ri ← (a ∗ ri−1 + b) mod m

The simplicity of this pseudocode is misleading because the devil lies in the
details of choosing the algorithm’s parameters. Here is a partial list of recommen-
dations based on the results of a sophisticated mathematical analysis (see [KnuII,
pp. 184–185] for details): seed may be chosen arbitrarily and is often set to the
current date and time; m should be large and may be conveniently taken as 2w,

where w is the computer’s word size; a should be selected as an integer between
0.01m and 0.99m with no particular pattern in its digits but such that a mod 8 = 5;
and the value of b can be chosen as 1.

The empirical data obtained as the result of an experiment need to be recorded
and then presented for an analysis. Data can be presented numerically in a table or
graphically in a scatterplot, i.e., by points in a Cartesian coordinate system. It is a
good idea to use both these options whenever it is feasible because both methods
have their unique strengths and weaknesses.
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The principal advantage of tabulated data lies in the opportunity to manip-
ulate it easily. For example, one can compute the ratios M(n)/g(n) where g(n) is
a candidate to represent the efficiency class of the algorithm in question. If the
algorithm is indeed in �(g(n)), most likely these ratios will converge to some pos-
itive constant as n gets large. (Note that careless novices sometimes assume that
this constant must be 1, which is, of course, incorrect according to the definition
of �(g(n)).) Or one can compute the ratios M(2n)/M(n) and see how the running
time reacts to doubling of its input size. As we discussed in Section 2.2, such ratios
should change only slightly for logarithmic algorithms and most likely converge
to 2, 4, and 8 for linear, quadratic, and cubic algorithms, respectively—to name
the most obvious and convenient cases.

On the other hand, the form of a scatterplot may also help in ascertaining
the algorithm’s probable efficiency class. For a logarithmic algorithm, the scat-
terplot will have a concave shape (Figure 2.7a); this fact distinguishes it from
all the other basic efficiency classes. For a linear algorithm, the points will tend
to aggregate around a straight line or, more generally, to be contained between
two straight lines (Figure 2.7b). Scatterplots of functions in �(n lg n) and �(n2)

will have a convex shape (Figure 2.7c), making them difficult to differentiate. A
scatterplot of a cubic algorithm will also have a convex shape, but it will show a
much more rapid increase in the metric’s values. An exponential algorithm will
most probably require a logarithmic scale for the vertical axis, in which the val-
ues of loga M(n) rather than those of M(n) are plotted. (The commonly used
logarithm base is 2 or 10.) In such a coordinate system, a scatterplot of a truly
exponential algorithm should resemble a linear function because M(n) ≈ can im-
plies logb M(n) ≈ logb c + n logb a, and vice versa.

One of the possible applications of the empirical analysis is to predict the al-
gorithm’s performance on an instance not included in the experiment sample. For
example, if you observe that the ratios M(n)/g(n) are close to some constant c

for the sample instances, it could be sensible to approximate M(n) by the prod-
uct cg(n) for other instances, too. This approach should be used with caution,
especially for values of n outside the sample range. (Mathematicians call such
predictions extrapolation, as opposed to interpolation, which deals with values
within the sample range.) Of course, you can try unleashing the standard tech-
niques of statistical data analysis and prediction. Note, however, that the majority
of such techniques are based on specific probabilistic assumptions that may or may
not be valid for the experimental data in question.

It seems appropriate to end this section by pointing out the basic differ-
ences between mathematical and empirical analyses of algorithms. The princi-
pal strength of the mathematical analysis is its independence of specific inputs;
its principal weakness is its limited applicability, especially for investigating the
average-case efficiency. The principal strength of the empirical analysis lies in its
applicability to any algorithm, but its results can depend on the particular sample
of instances and the computer used in the experiment.
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FIGURE 2.7 Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex
functions.

Exercises 2.6

1. Consider the following well-known sorting algorithm, which is studied later
in the book, with a counter inserted to count the number of key comparisons.

ALGORITHM SortAnalysis(A[0..n − 1])

//Input: An array A[0..n − 1] of n orderable elements
//Output: The total number of key comparisons made
count ← 0
for i ← 1 to n − 1 do
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v ← A[i]
j ← i − 1
while j ≥ 0 and A[j ] > v do

count ← count + 1
A[j + 1] ← A[j ]
j ← j − 1

A[j + 1] ← v

return count

Is the comparison counter inserted in the right place? If you believe it is, prove
it; if you believe it is not, make an appropriate correction.

2. a. Run the program of Problem 1, with a properly inserted counter (or coun-
ters) for the number of key comparisons, on 20 random arrays of sizes 1000,
2000, 3000, . . . , 20,000.

b. Analyze the data obtained to form a hypothesis about the algorithm’s
average-case efficiency.

c. Estimate the number of key comparisons we should expect for a randomly
generated array of size 25,000 sorted by the same algorithm.

3. Repeat Problem 2 by measuring the program’s running time in milliseconds.

4. Hypothesize a likely efficiency class of an algorithm based on the following
empirical observations of its basic operation’s count:

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

count 11,966 24,303 39,992 53,010 67,272 78,692 91,274 113,063 129,799 140,538

5. What scale transformation will make a logarithmic scatterplot look like a
linear one?

6. How can one distinguish a scatterplot for an algorithm in �(lg lg n) from a
scatterplot for an algorithm in �(lg n)?

7. a. Find empirically the largest number of divisions made by Euclid’s algo-
rithm for computing gcd(m, n) for 1≤ n ≤ m ≤ 100.

b. For each positive integer k, find empirically the smallest pair of integers
1≤ n ≤ m ≤ 100 for which Euclid’s algorithm needs to make k divisions in
order to find gcd(m, n).

8. The average-case efficiency of Euclid’s algorithm on inputs of size n can be
measured by the average number of divisions Davg(n) made by the algorithm
in computing gcd(n, 1), gcd(n, 2), . . . , gcd(n, n). For example,

Davg(5) = 1
5
(1 + 2 + 3 + 2 + 1) = 1.8.
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Produce a scatterplot of Davg(n) and indicate the algorithm’s likely average-
case efficiency class.

9. Run an experiment to ascertain the efficiency class of the sieve of Eratos-
thenes (see Section 1.1).

10. Run a timing experiment for the three algorithms for computing gcd(m, n)

presented in Section 1.1.

2.7 Algorithm Visualization

In addition to the mathematical and empirical analyses of algorithms, there is yet
a third way to study algorithms. It is called algorithm visualization and can be
defined as the use of images to convey some useful information about algorithms.
That information can be a visual illustration of an algorithm’s operation, of its per-
formance on different kinds of inputs, or of its execution speed versus that of other
algorithms for the same problem. To accomplish this goal, an algorithm visualiza-
tion uses graphic elements—points, line segments, two- or three-dimensional bars,
and so on—to represent some “interesting events” in the algorithm’s operation.

There are two principal variations of algorithm visualization:

Static algorithm visualization
Dynamic algorithm visualization, also called algorithm animation

Static algorithm visualization shows an algorithm’s progress through a series
of still images. Algorithm animation, on the other hand, shows a continuous,
movie-like presentation of an algorithm’s operations. Animation is an arguably
more sophisticated option, which, of course, is much more difficult to implement.

Early efforts in the area of algorithm visualization go back to the 1970s. The
watershed event happened in 1981 with the appearance of a 30-minute color sound
film titled Sorting Out Sorting. This algorithm visualization classic was produced
at the University of Toronto by Ronald Baecker with the assistance of D. Sherman
[Bae81, Bae98]. It contained visualizations of nine well-known sorting algorithms
(more than half of them are discussed later in the book) and provided quite a
convincing demonstration of their relative speeds.

The success of Sorting Out Sorting made sorting algorithms a perennial fa-
vorite for algorithm animation. Indeed, the sorting problem lends itself quite
naturally to visual presentation via vertical or horizontal bars or sticks of different
heights or lengths, which need to be rearranged according to their sizes (Figure
2.8). This presentation is convenient, however, only for illustrating actions of a
typical sorting algorithm on small inputs. For larger files, Sorting Out Sorting used
the ingenious idea of presenting data by a scatterplot of points on a coordinate
plane, with the first coordinate representing an item’s position in the file and the
second one representing the item’s value; with such a representation, the process
of sorting looks like a transformation of a “random” scatterplot of points into the
points along a frame’s diagonal (Figure 2.9). In addition, most sorting algorithms
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FIGURE 2.8 Initial and final screens of a typical visualization of a sorting algorithm using
the bar representation.

work by comparing and exchanging two given items at a time—an event that can
be animated relatively easily.

Since the appearance of Sorting Out Sorting, a great number of algorithm
animations have been created, especially after the appearance of Java and the
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FIGURE 2.9 Initial and final screens of a typical visualization of a sorting algorithm using
the scatterplot representation.

World Wide Web in the 1990s. They range in scope from one particular algorithm
to a group of algorithms for the same problem (e.g., sorting) or the same applica-
tion area (e.g., geometric algorithms) to general-purpose animation systems. At
the end of 2010, a catalog of links to existing visualizations, maintained under the
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NSF-supported AlgoVizProject, contained over 500 links. Unfortunately, a survey
of existing visualizations found most of them to be of low quality, with the content
heavily skewed toward easier topics such as sorting [Sha07].

There are two principal applications of algorithm visualization: research and
education. Potential benefits for researchers are based on expectations that algo-
rithm visualization may help uncover some unknown features of algorithms. For
example, one researcher used a visualization of the recursive Tower of Hanoi algo-
rithm in which odd- and even-numbered disks were colored in two different colors.
He noticed that two disks of the same color never came in direct contact during
the algorithm’s execution. This observation helped him in developing a better non-
recursive version of the classic algorithm. To give another example, Bentley and
McIlroy [Ben93] mentioned using an algorithm animation system in their work
on improving a library implementation of a leading sorting algorithm.

The application of algorithm visualization to education seeks to help students
learning algorithms. The available evidence of its effectiveness is decisively mixed.
Although some experiments did register positive learning outcomes, others failed
to do so. The increasing body of evidence indicates that creating sophisticated
software systems is not going to be enough. In fact, it appears that the level of
student involvement with visualization might be more important than specific
features of visualization software. In some experiments, low-tech visualizations
prepared by students were more effective than passive exposure to sophisticated
software systems.

To summarize, although some successes in both research and education have
been reported in the literature, they are not as impressive as one might expect. A
deeper understanding of human perception of images will be required before the
true potential of algorithm visualization is fulfilled.

SUMMARY

There are two kinds of algorithm efficiency: time efficiency and space
efficiency. Time efficiency indicates how fast the algorithm runs; space
efficiency deals with the extra space it requires.

An algorithm’s time efficiency is principally measured as a function of its input
size by counting the number of times its basic operation is executed. A basic
operation is the operation that contributes the most to running time. Typically,
it is the most time-consuming operation in the algorithm’s innermost loop.

For some algorithms, the running time can differ considerably for inputs of
the same size, leading to worst-case efficiency, average-case efficiency, and
best-case efficiency.

The established framework for analyzing time efficiency is primarily grounded
in the order of growth of the algorithm’s running time as its input size goes to
infinity.
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The notations O, �, and � are used to indicate and compare the asymptotic
orders of growth of functions expressing algorithm efficiencies.

The efficiencies of a large number of algorithms fall into the following
few classes: constant, logarithmic, linear, linearithmic, quadratic, cubic, and
exponential.

The main tool for analyzing the time efficiency of a nonrecursive algorithm
is to set up a sum expressing the number of executions of its basic operation
and ascertain the sum’s order of growth.

The main tool for analyzing the time efficiency of a recursive algorithm is to
set up a recurrence relation expressing the number of executions of its basic
operation and ascertain the solution’s order of growth.

Succinctness of a recursive algorithm may mask its inefficiency.

The Fibonacci numbers are an important sequence of integers in which every
element is equal to the sum of its two immediate predecessors. There are
several algorithms for computing the Fibonacci numbers, with drastically
different efficiencies.

Empirical analysis of an algorithm is performed by running a program
implementing the algorithm on a sample of inputs and analyzing the data
observed (the basic operation’s count or physical running time). This
often involves generating pseudorandom numbers. The applicability to any
algorithm is the principal strength of this approach; the dependence of results
on the particular computer and instance sample is its main weakness.

Algorithm visualization is the use of images to convey useful information
about algorithms. The two principal variations of algorithm visualization are
static algorithm visualization and dynamic algorithm visualization (also called
algorithm animation).
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3
Brute Force and
Exhaustive Search

Science is as far removed from brute force as this sword from a crowbar.
—Edward Lytton (1803–1873), Leila, Book II, Chapter I

Doing a thing well is often a waste of time.
—Robert Byrne, a master pool and billiards player and a writer

After introducing the framework and methods for algorithm analysis in the
preceding chapter, we are ready to embark on a discussion of algorithm

design strategies. Each of the next eight chapters is devoted to a particular design
strategy. The subject of this chapter is brute force and its important special case,
exhaustive search. Brute force can be described as follows:

Brute force is a straightforward approach to solving a problem, usually
directly based on the problem statement and definitions of the concepts
involved.

The “force” implied by the strategy’s definition is that of a computer and
not that of one’s intellect. “Just do it!” would be another way to describe the
prescription of the brute-force approach. And often, the brute-force strategy is
indeed the one that is easiest to apply.

As an example, consider the exponentiation problem: compute an for a
nonzero number a and a nonnegative integer n. Although this problem might
seem trivial, it provides a useful vehicle for illustrating several algorithm design
strategies, including the brute force. (Also note that computing an mod m for some
large integers is a principal component of a leading encryption algorithm.) By the
definition of exponentiation,

an = a ∗ . . . ∗ a︸ ︷︷ ︸
n times

.

97
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This suggests simply computing an by multiplying 1 by a n times.
We have already encountered at least two brute-force algorithms in the book:

the consecutive integer checking algorithm for computing gcd(m, n) in Section 1.1
and the definition-based algorithm for matrix multiplication in Section 2.3. Many
other examples are given later in this chapter. (Can you identify a few algorithms
you already know as being based on the brute-force approach?)

Though rarely a source of clever or efficient algorithms, the brute-force ap-
proach should not be overlooked as an important algorithm design strategy. First,
unlike some of the other strategies, brute force is applicable to a very wide va-
riety of problems. In fact, it seems to be the only general approach for which it
is more difficult to point out problems it cannot tackle. Second, for some impor-
tant problems—e.g., sorting, searching, matrix multiplication, string matching—
the brute-force approach yields reasonable algorithms of at least some practi-
cal value with no limitation on instance size. Third, the expense of designing a
more efficient algorithm may be unjustifiable if only a few instances of a prob-
lem need to be solved and a brute-force algorithm can solve those instances with
acceptable speed. Fourth, even if too inefficient in general, a brute-force algo-
rithm can still be useful for solving small-size instances of a problem. Finally,
a brute-force algorithm can serve an important theoretical or educational pur-
pose as a yardstick with which to judge more efficient alternatives for solving a
problem.

3.1 Selection Sort and Bubble Sort

In this section, we consider the application of the brute-force approach to the
problem of sorting: given a list of n orderable items (e.g., numbers, characters
from some alphabet, character strings), rearrange them in nondecreasing order.
As we mentioned in Section 1.3, dozens of algorithms have been developed for
solving this very important problem. You might have learned several of them in
the past. If you have, try to forget them for the time being and look at the problem
afresh.

Now, after your mind is unburdened of previous knowledge of sorting algo-
rithms, ask yourself a question: “What would be the most straightforward method
for solving the sorting problem?” Reasonable people may disagree on the answer
to this question. The two algorithms discussed here—selection sort and bubble
sort—seem to be the two prime candidates.

Selection Sort

We start selection sort by scanning the entire given list to find its smallest element
and exchange it with the first element, putting the smallest element in its final
position in the sorted list. Then we scan the list, starting with the second element,
to find the smallest among the last n − 1 elements and exchange it with the second
element, putting the second smallest element in its final position. Generally, on the
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ith pass through the list, which we number from 0 to n − 2, the algorithm searches
for the smallest item among the last n − i elements and swaps it with Ai:

in their final positions

A0 ≤ A1 ≤ . . . ≤ Ai–1 ⏐ Ai, . . . , Amin, . . . , An–1

the last n – i elements

After n − 1 passes, the list is sorted.
Here is pseudocode of this algorithm, which, for simplicity, assumes that the

list is implemented as an array:

ALGORITHM SelectionSort(A[0..n − 1])

//Sorts a given array by selection sort
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
for i ← 0 to n − 2 do

min ← i

for j ← i + 1 to n − 1 do
if A[j ] < A[min] min ← j

swap A[i] and A[min]

As an example, the action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17
is illustrated in Figure 3.1.

The analysis of selection sort is straightforward. The input size is given by the
number of elements n; the basic operation is the key comparison A[j ] < A[min].
The number of times it is executed depends only on the array size and is given by
the following sum:

C(n) =
n−2∑
i=0

n−1∑
j=i+1

1 =
n−2∑
i=0

[(n − 1) − (i + 1) + 1] =
n−2∑
i=0

(n − 1 − i).

|  89
  17  |
  17
  17
  17
  17
  17

45
45
29  |
29
29
29
29

68
68
68
34  |
34
34
34

90
90
90
90
45  |
45
45

29
29

45
45

90
68  |
68

34
34
34

68
68

90
 89  |

17

89
89
89
89
89

90

FIGURE 3.1 Example of sorting with selection sort. Each line corresponds to one
iteration of the algorithm, i.e., a pass through the list’s tail to the right
of the vertical bar; an element in bold indicates the smallest element
found. Elements to the left of the vertical bar are in their final positions and
are not considered in this and subsequent iterations.
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Since we have already encountered the last sum in analyzing the algorithm of
Example 2 in Section 2.3, you should be able to compute it now on your own.
Whether you compute this sum by distributing the summation symbol or by
immediately getting the sum of decreasing integers, the answer, of course, must
be the same:

C(n) =
n−2∑
i=0

n−1∑
j=i+1

1 =
n−2∑
i=0

(n − 1 − i) = (n − 1)n
2

.

Thus, selection sort is a �(n2) algorithm on all inputs. Note, however, that the
number of key swaps is only �(n), or, more precisely, n − 1(one for each repetition
of the i loop). This property distinguishes selection sort positively from many other
sorting algorithms.

Bubble Sort

Another brute-force application to the sorting problem is to compare adjacent
elements of the list and exchange them if they are out of order. By doing it
repeatedly, we end up “bubbling up” the largest element to the last position on
the list. The next pass bubbles up the second largest element, and so on, until
after n − 1 passes the list is sorted. Pass i (0 ≤ i ≤ n − 2) of bubble sort can be
represented by the following diagram:

A0, . . . , Aj

?↔ Aj+1, . . . , An−i−1 | An−i ≤ . . . ≤ An−1
in their final positions

Here is pseudocode of this algorithm.

ALGORITHM BubbleSort(A[0..n − 1])

//Sorts a given array by bubble sort
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
for i ← 0 to n − 2 do

for j ← 0 to n − 2 − i do
if A[j + 1] < A[j ] swap A[j ] and A[j + 1]

The action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17 is illustrated
as an example in Figure 3.2.

The number of key comparisons for the bubble-sort version given above is
the same for all arrays of size n; it is obtained by a sum that is almost identical to
the sum for selection sort:
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90

90

90

29

29

29

90

34

34

34

34

34

34

90

17

17

17

17

17

17

90

↔?

↔? ↔?

↔?

↔?

↔?

↔?

↔?

↔?

↔?

↔?

etc.

|

|

|

|

|

FIGURE 3.2 First two passes of bubble sort on the list 89, 45, 68, 90, 29, 34, 17. A new
line is shown after a swap of two elements is done. The elements to the
right of the vertical bar are in their final positions and are not considered in
subsequent iterations of the algorithm.

C(n) =
n−2∑
i=0

n−2−i∑
j=0

1 =
n−2∑
i=0

[(n − 2 − i) − 0 + 1]

=
n−2∑
i=0

(n − 1 − i) = (n − 1)n
2

∈ �(n2).

The number of key swaps, however, depends on the input. In the worst case of
decreasing arrays, it is the same as the number of key comparisons:

Sworst(n) = C(n) = (n − 1)n
2

∈ �(n2).

As is often the case with an application of the brute-force strategy, the first
version of an algorithm obtained can often be improved upon with a modest
amount of effort. Specifically, we can improve the crude version of bubble sort
given above by exploiting the following observation: if a pass through the list
makes no exchanges, the list has been sorted and we can stop the algorithm
(Problem 12a in this section’s exercises). Though the new version runs faster on
some inputs, it is still in �(n2) in the worst and average cases. In fact, even among
elementary sorting methods, bubble sort is an inferior choice, and if it were not for
its catchy name, you would probably have never heard of it. However, the general
lesson you just learned is important and worth repeating:

A first application of the brute-force approach often results in an algorithm
that can be improved with a modest amount of effort.
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Exercises 3.1

1. a. Give an example of an algorithm that should not be considered an appli-
cation of the brute-force approach.

b. Give an example of a problem that cannot be solved by a brute-force
algorithm.

2. a. What is the time efficiency of the brute-force algorithm for computing
an as a function of n? As a function of the number of bits in the binary
representation of n?

b. If you are to compute an mod m where a > 1and n is a large positive integer,
how would you circumvent the problem of a very large magnitude of an?

3. For each of the algorithms in Problems 4, 5, and 6 of Exercises 2.3, tell whether
or not the algorithm is based on the brute-force approach.

4. a. Design a brute-force algorithm for computing the value of a polynomial

p(x) = anx
n + an−1x

n−1 + . . . + a1x + a0

at a given point x0 and determine its worst-case efficiency class.
b. If the algorithm you designed is in �(n2), design a linear algorithm for this

problem.

c. Is it possible to design an algorithm with a better-than-linear efficiency for
this problem?

5. A network topology specifies how computers, printers, and other devices
are connected over a network. The figure below illustrates three common
topologies of networks: the ring, the star, and the fully connected mesh.

ring star fully connected mesh

You are given a boolean matrix A[0..n − 1, 0..n − 1], where n > 3, which is
supposed to be the adjacency matrix of a graph modeling a network with one
of these topologies. Your task is to determine which of these three topologies,
if any, the matrix represents. Design a brute-force algorithm for this task and
indicate its time efficiency class.

6. Tetromino tilings Tetrominoes are tiles made of four 1 × 1 squares. There
are five types of tetrominoes shown below:
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straight tetromino square tetromino L-tetromino T-tetromino Z-tetromino

Is it possible to tile—i.e., cover exactly without overlaps—an 8 × 8 chessboard
with

a. straight tetrominoes? b. square tetrominoes?

c. L-tetrominoes? d. T-tetrominoes?

e. Z-tetrominoes?

7. A stack of fake coins There are n stacks of n identical-looking coins. All of
the coins in one of these stacks are counterfeit, while all the coins in the other
stacks are genuine. Every genuine coin weighs 10 grams; every fake weighs
11 grams. You have an analytical scale that can determine the exact weight of
any number of coins.
a. Devise a brute-force algorithm to identify the stack with the fake coins and

determine its worst-case efficiency class.

b. What is the minimum number of weighings needed to identify the stack
with the fake coins?

8. Sort the list E, X, A, M, P, L, E in alphabetical order by selection sort.

9. Is selection sort stable? (The definition of a stable sorting algorithm was given
in Section 1.3.)

10. Is it possible to implement selection sort for linked lists with the same �(n2)

efficiency as the array version?

11. Sort the list E, X, A, M, P, L, E in alphabetical order by bubble sort.

12. a. Prove that if bubble sort makes no exchanges on its pass through a list, the
list is sorted and the algorithm can be stopped.

b. Write pseudocode of the method that incorporates this improvement.

c. Prove that the worst-case efficiency of the improved version is quadratic.

13. Is bubble sort stable?

14. Alternating disks You have a row of 2n disks of two colors, n dark and n light.
They alternate: dark, light, dark, light, and so on. You want to get all the dark
disks to the right-hand end, and all the light disks to the left-hand end. The
only moves you are allowed to make are those that interchange the positions
of two neighboring disks.

Design an algorithm for solving this puzzle and determine the number of
moves it takes. [Gar99]
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3.2 Sequential Search and Brute-Force String Matching

We saw in the previous section two applications of the brute-force approach to the
sorting porblem. Here we discuss two applications of this strategy to the problem
of searching. The first deals with the canonical problem of searching for an item
of a given value in a given list. The second is different in that it deals with the
string-matching problem.

Sequential Search

We have already encountered a brute-force algorithm for the general searching
problem: it is called sequential search (see Section 2.1). To repeat, the algorithm
simply compares successive elements of a given list with a given search key until
either a match is encountered (successful search) or the list is exhausted without
finding a match (unsuccessful search). A simple extra trick is often employed
in implementing sequential search: if we append the search key to the end of
the list, the search for the key will have to be successful, and therefore we can
eliminate the end of list check altogether. Here is pseudocode of this enhanced
version.

ALGORITHM SequentialSearch2(A[0..n], K)

//Implements sequential search with a search key as a sentinel
//Input: An array A of n elements and a search key K

//Output: The index of the first element in A[0..n − 1] whose value is
// equal to K or −1 if no such element is found
A[n] ← K

i ← 0
while A[i] �= K do

i ← i + 1
if i < n return i

else return −1

Another straightforward improvement can be incorporated in sequential
search if a given list is known to be sorted: searching in such a list can be stopped
as soon as an element greater than or equal to the search key is encountered.

Sequential search provides an excellent illustration of the brute-force ap-
proach, with its characteristic strength (simplicity) and weakness (inferior effi-
ciency). The efficiency results obtained in Section 2.1 for the standard version of
sequential search change for the enhanced version only very slightly, so that the
algorithm remains linear in both the worst and average cases. We discuss later in
the book several searching algorithms with a better time efficiency.
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Brute-Force String Matching

Recall the string-matching problem introduced in Section 1.3: given a string of n

characters called the text and a string of m characters (m ≤ n) called the pattern,
find a substring of the text that matches the pattern. To put it more precisely, we
want to find i—the index of the leftmost character of the first matching substring
in the text—such that ti = p0, . . . , ti+j = pj, . . . , ti+m−1 = pm−1:

t0 . . . ti . . . ti+j . . . ti+m−1 . . . tn−1 text T

� � �
p0 . . . pj . . . pm−1 pattern P

If matches other than the first one need to be found, a string-matching algorithm
can simply continue working until the entire text is exhausted.

A brute-force algorithm for the string-matching problem is quite obvious:
align the pattern against the first m characters of the text and start matching the
corresponding pairs of characters from left to right until either all the m pairs
of the characters match (then the algorithm can stop) or a mismatching pair is
encountered. In the latter case, shift the pattern one position to the right and
resume the character comparisons, starting again with the first character of the
pattern and its counterpart in the text. Note that the last position in the text that
can still be a beginning of a matching substring is n − m (provided the text positions
are indexed from 0 to n − 1). Beyond that position, there are not enough characters
to match the entire pattern; hence, the algorithm need not make any comparisons
there.

ALGORITHM BruteForceStringMatch(T [0..n − 1], P [0..m − 1])

//Implements brute-force string matching
//Input: An array T [0..n − 1] of n characters representing a text and
// an array P [0..m − 1] of m characters representing a pattern
//Output: The index of the first character in the text that starts a
// matching substring or −1 if the search is unsuccessful
for i ← 0 to n − m do

j ← 0
while j < m and P [j ] = T [i + j ] do

j ← j + 1
if j = m return i

return −1

An operation of the algorithm is illustrated in Figure 3.3. Note that for this
example, the algorithm shifts the pattern almost always after a single character
comparison. The worst case is much worse: the algorithm may have to make
all m comparisons before shifting the pattern, and this can happen for each of
the n − m + 1 tries. (Problem 6 in this section’s exercises asks you to give a
specific example of such a situation.) Thus, in the worst case, the algorithm makes
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N  O  B  O  D  Y  _  N  O  T  I  C  E  D  _  H  I  M
N  O  T

N  O  T
N  O  T

N  O  T
N  O  T

N  O  T
N  O  T

N  O  T

FIGURE 3.3 Example of brute-force string matching. The pattern’s characters that are
compared with their text counterparts are in bold type.

m(n − m + 1) character comparisons, which puts it in the O(nm) class. For a typical
word search in a natural language text, however, we should expect that most shifts
would happen after very few comparisons (check the example again). Therefore,
the average-case efficiency should be considerably better than the worst-case
efficiency. Indeed it is: for searching in random texts, it has been shown to be linear,
i.e., �(n). There are several more sophisticated and more efficient algorithms for
string searching. The most widely known of them—by R. Boyer and J. Moore—is
outlined in Section 7.2 along with its simplification suggested by R. Horspool.

Exercises 3.2

1. Find the number of comparisons made by the sentinel version of sequential
search
a. in the worst case.

b. in the average case if the probability of a successful search is p (0 ≤ p ≤ 1).

2. As shown in Section 2.1, the average number of key comparisons made by
sequential search (without a sentinel, under standard assumptions about its
inputs) is given by the formula

Cavg(n) = p(n + 1)
2

+ n(1 − p),

where p is the probability of a successful search. Determine, for a fixed n, the
values of p (0 ≤ p ≤ 1) for which this formula yields the maximum value of
Cavg(n) and the minimum value of Cavg(n).

3. Gadget testing A firm wants to determine the highest floor of its n-story
headquarters from which a gadget can fall without breaking. The firm has two
identical gadgets to experiment with. If one of them gets broken, it cannot be
repaired, and the experiment will have to be completed with the remaining
gadget. Design an algorithm in the best efficiency class you can to solve this
problem.
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4. Determine the number of character comparisons made by the brute-force
algorithm in searching for the pattern GANDHI in the text

THERE_IS_MORE_TO_LIFE_THAN_INCREASING_ITS_SPEED

Assume that the length of the text—it is 47 characters long—is known before
the search starts.

5. How many comparisons (both successful and unsuccessful) will be made by
the brute-force algorithm in searching for each of the following patterns in
the binary text of one thousand zeros?

a. 00001 b. 10000 c. 01010

6. Give an example of a text of length n and a pattern of length m that constitutes
a worst-case input for the brute-force string-matching algorithm. Exactly how
many character comparisons will be made for such input?

7. In solving the string-matching problem, would there be any advantage in
comparing pattern and text characters right-to-left instead of left-to-right?

8. Consider the problem of counting, in a given text, the number of substrings
that start with an A and end with a B. For example, there are four such
substrings in CABAAXBYA.
a. Design a brute-force algorithm for this problem and determine its effi-

ciency class.

b. Design a more efficient algorithm for this problem. [Gin04]

9. Write a visualization program for the brute-force string-matching algorithm.

10. Word Find A popular diversion in the United States, “word find” (or “word
search”) puzzles ask the player to find each of a given set of words in a square
table filled with single letters. A word can read horizontally (left or right),
vertically (up or down), or along a 45 degree diagonal (in any of the four
directions) formed by consecutively adjacent cells of the table; it may wrap
around the table’s boundaries, but it must read in the same direction with no
zigzagging. The same cell of the table may be used in different words, but, in a
given word, the same cell may be used no more than once. Write a computer
program for solving this puzzle.

11. Battleship game Write a program based on a version of brute-force pattern
matching for playing the game Battleship on the computer. The rules of the
game are as follows. There are two opponents in the game (in this case,
a human player and the computer). The game is played on two identical
boards (10 × 10 tables of squares) on which each opponent places his or her
ships, not seen by the opponent. Each player has five ships, each of which
occupies a certain number of squares on the board: a destroyer (two squares),
a submarine (three squares), a cruiser (three squares), a battleship (four
squares), and an aircraft carrier (five squares). Each ship is placed either
horizontally or vertically, with no two ships touching each other. The game
is played by the opponents taking turns “shooting” at each other’s ships. The



108 Brute Force and Exhaustive Search

result of every shot is displayed as either a hit or a miss. In case of a hit, the
player gets to go again and keeps playing until missing. The goal is to sink all
the opponent’s ships before the opponent succeeds in doing it first. To sink a
ship, all squares occupied by the ship must be hit.

3.3 Closest-Pair and Convex-Hull Problems
by Brute Force

In this section, we consider a straightforward approach to two well-known prob-
lems dealing with a finite set of points in the plane. These problems, aside from
their theoretical interest, arise in two important applied areas: computational ge-
ometry and operations research.

Closest-Pair Problem

The closest-pair problem calls for finding the two closest points in a set of n

points. It is the simplest of a variety of problems in computational geometry that
deals with proximity of points in the plane or higher-dimensional spaces. Points
in question can represent such physical objects as airplanes or post offices as well
as database records, statistical samples, DNA sequences, and so on. An air-traffic
controller might be interested in two closest planes as the most probable collision
candidates. A regional postal service manager might need a solution to the closest-
pair problem to find candidate post-office locations to be closed.

One of the important applications of the closest-pair problem is cluster analy-
sis in statistics. Based on n data points, hierarchical cluster analysis seeks to orga-
nize them in a hierarchy of clusters based on some similarity metric. For numerical
data, this metric is usually the Euclidean distance; for text and other nonnumerical
data, metrics such as the Hamming distance (see Problem 5 in this section’s ex-
ercises) are used. A bottom-up algorithm begins with each element as a separate
cluster and merges them into successively larger clusters by combining the closest
pair of clusters.

For simplicity, we consider the two-dimensional case of the closest-pair prob-
lem. We assume that the points in question are specified in a standard fashion by
their (x, y) Cartesian coordinates and that the distance between two points pi(xi,

yi) and pj(xj, yj) is the standard Euclidean distance

d(pi, pj) =
√

(xi − xj)
2 + (yi − yj)

2.

The brute-force approach to solving this problem leads to the following ob-
vious algorithm: compute the distance between each pair of distinct points and
find a pair with the smallest distance. Of course, we do not want to compute the
distance between the same pair of points twice. To avoid doing so, we consider
only the pairs of points (pi, pj) for which i < j .
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Pseudocode below computes the distance between the two closest points;
getting the closest points themselves requires just a trivial modification.

ALGORITHM BruteForceClosestPair(P )

//Finds distance between two closest points in the plane by brute force
//Input: A list P of n (n ≥ 2) points p1(x1, y1), . . . , pn(xn, yn)

//Output: The distance between the closest pair of points
d ← ∞
for i ← 1 to n − 1 do

for j ← i + 1 to n do
d ← min(d, sqrt((xi − xj)

2 + (yi − yj)
2)) //sqrt is square root

return d

The basic operation of the algorithm is computing the square root. In the age
of electronic calculators with a square-root button, one might be led to believe
that computing the square root is as simple an operation as, say, addition or
multiplication. Of course, it is not. For starters, even for most integers, square roots
are irrational numbers that therefore can be found only approximately. Moreover,
computing such approximations is not a trivial matter. But, in fact, computing
square roots in the loop can be avoided! (Can you think how?) The trick is to
realize that we can simply ignore the square-root function and compare the values
(xi − xj)

2 + (yi − yj)
2 themselves. We can do this because the smaller a number of

which we take the square root, the smaller its square root, or, as mathematicians
say, the square-root function is strictly increasing.

Then the basic operation of the algorithm will be squaring a number. The
number of times it will be executed can be computed as follows:

C(n) =
n−1∑
i=1

n∑
j=i+1

2 = 2
n−1∑
i=1

(n − i)

= 2[(n − 1) + (n − 2) + . . . + 1] = (n − 1)n ∈ �(n2).

Of course, speeding up the innermost loop of the algorithm could only de-
crease the algorithm’s running time by a constant factor (see Problem 1 in this
section’s exercises), but it cannot improve its asymptotic efficiency class. In Chap-
ter 5, we discuss a linearithmic algorithm for this problem, which is based on a
more sophisticated design technique.

Convex-Hull Problem

On to the other problem—that of computing the convex hull. Finding the convex
hull for a given set of points in the plane or a higher dimensional space is one of
the most important—some people believe the most important—problems in com-
putational geometry. This prominence is due to a variety of applications in which
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this problem needs to be solved, either by itself or as a part of a larger task. Sev-
eral such applications are based on the fact that convex hulls provide convenient
approximations of object shapes and data sets given. For example, in computer an-
imation, replacing objects by their convex hulls speeds up collision detection; the
same idea is used in path planning for Mars mission rovers. Convex hulls are used
in computing accessibility maps produced from satellite images by Geographic
Information Systems. They are also used for detecting outliers by some statisti-
cal techniques. An efficient algorithm for computing a diameter of a set of points,
which is the largest distance between two of the points, needs the set’s convex hull
to find the largest distance between two of its extreme points (see below). Finally,
convex hulls are important for solving many optimization problems, because their
extreme points provide a limited set of solution candidates.

We start with a definition of a convex set.

DEFINITION A set of points (finite or infinite) in the plane is called convex if
for any two points p and q in the set, the entire line segment with the endpoints
at p and q belongs to the set.

All the sets depicted in Figure 3.4a are convex, and so are a straight line,
a triangle, a rectangle, and, more generally, any convex polygon,1 a circle, and
the entire plane. On the other hand, the sets depicted in Figure 3.4b, any finite
set of two or more distinct points, the boundary of any convex polygon, and a
circumference are examples of sets that are not convex.

Now we are ready for the notion of the convex hull. Intuitively, the convex
hull of a set of n points in the plane is the smallest convex polygon that contains
all of them either inside or on its boundary. If this formulation does not fire up
your enthusiasm, consider the problem as one of barricading n sleeping tigers by
a fence of the shortest length. This interpretation is due to D. Harel [Har92]; it is
somewhat lively, however, because the fenceposts have to be erected right at the
spots where some of the tigers sleep! There is another, much tamer interpretation
of this notion. Imagine that the points in question are represented by nails driven
into a large sheet of plywood representing the plane. Take a rubber band and
stretch it to include all the nails, then let it snap into place. The convex hull is the
area bounded by the snapped rubber band (Figure 3.5).

A formal definition of the convex hull that is applicable to arbitrary sets,
including sets of points that happen to lie on the same line, follows.

DEFINITION The convex hull of a set S of points is the smallest convex set
containing S. (The “smallest” requirement means that the convex hull of S must
be a subset of any convex set containing S.)

If S is convex, its convex hull is obviously S itself. If S is a set of two points,
its convex hull is the line segment connecting these points. If S is a set of three

1. By “a triangle, a rectangle, and, more generally, any convex polygon,” we mean here a region, i.e., the
set of points both inside and on the boundary of the shape in question.
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(b)(a)

FIGURE 3.4 (a) Convex sets. (b) Sets that are not convex.

FIGURE 3.5 Rubber-band interpretation of the convex hull.

points not on the same line, its convex hull is the triangle with the vertices at the
three points given; if the three points do lie on the same line, the convex hull is
the line segment with its endpoints at the two points that are farthest apart. For
an example of the convex hull for a larger set, see Figure 3.6.

A study of the examples makes the following theorem an expected result.

THEOREM The convex hull of any set S of n > 2 points not all on the same line
is a convex polygon with the vertices at some of the points of S. (If all the points
do lie on the same line, the polygon degenerates to a line segment but still with
the endpoints at two points of S.)
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FIGURE 3.6 The convex hull for this set of eight points is the convex polygon with
vertices at p1, p5, p6, p7, and p3.

The convex-hull problem is the problem of constructing the convex hull for
a given set S of n points. To solve it, we need to find the points that will serve as
the vertices of the polygon in question. Mathematicians call the vertices of such
a polygon “extreme points.” By definition, an extreme point of a convex set is a
point of this set that is not a middle point of any line segment with endpoints in
the set. For example, the extreme points of a triangle are its three vertices, the
extreme points of a circle are all the points of its circumference, and the extreme
points of the convex hull of the set of eight points in Figure 3.6 are p1, p5, p6, p7,

and p3.
Extreme points have several special properties other points of a convex set

do not have. One of them is exploited by the simplex method , a very important
algorithm discussed in Section 10.1. This algorithm solves linear programming
problems, which are problems of finding a minimum or a maximum of a linear
function of n variables subject to linear constraints (see Problem 12 in this section’s
exercises for an example and Sections 6.6 and 10.1 for a general discussion). Here,
however, we are interested in extreme points because their identification solves
the convex-hull problem. Actually, to solve this problem completely, we need to
know a bit more than just which of n points of a given set are extreme points of the
set’s convex hull: we need to know which pairs of points need to be connected to
form the boundary of the convex hull. Note that this issue can also be addressed
by listing the extreme points in a clockwise or a counterclockwise order.

So how can we solve the convex-hull problem in a brute-force manner? If you
do not see an immediate plan for a frontal attack, do not be dismayed: the convex-
hull problem is one with no obvious algorithmic solution. Nevertheless, there is a
simple but inefficient algorithm that is based on the following observation about
line segments making up the boundary of a convex hull: a line segment connecting
two points pi and pj of a set of n points is a part of the convex hull’s boundary if and
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only if all the other points of the set lie on the same side of the straight line through
these two points.2 (Verify this property for the set in Figure 3.6.) Repeating this
test for every pair of points yields a list of line segments that make up the convex
hull’s boundary.

A few elementary facts from analytical geometry are needed to implement
this algorithm. First, the straight line through two points (x1, y1), (x2, y2) in the
coordinate plane can be defined by the equation

ax + by = c,

where a = y2 − y1, b = x1 − x2, c = x1y2 − y1x2.
Second, such a line divides the plane into two half-planes: for all the points

in one of them, ax + by > c, while for all the points in the other, ax + by < c.
(For the points on the line itself, of course, ax + by = c.) Thus, to check whether
certain points lie on the same side of the line, we can simply check whether the
expression ax + by − c has the same sign for each of these points. We leave the
implementation details as an exercise.

What is the time efficiency of this algorithm? It is in O(n3): for each of
n(n − 1)/2 pairs of distinct points, we may need to find the sign of ax + by − c

for each of the other n − 2 points. There are much more efficient algorithms for
this important problem, and we discuss one of them later in the book.

Exercises 3.3

1. Assuming that sqrt takes about 10 times longer than each of the other oper-
ations in the innermost loop of BruteForceClosestPoints, which are assumed
to take the same amount of time, estimate how much faster the algorithm will
run after the improvement discussed in Section 3.3.

2. Can you design a more efficient algorithm than the one based on the brute-
force strategy to solve the closest-pair problem for n points x1, x2, . . . , xn on
the real line?

3. Let x1 < x2 < . . . < xn be real numbers representing coordinates of n villages
located along a straight road. A post office needs to be built in one of these
villages.
a. Design an efficient algorithm to find the post-office location minimizing

the average distance between the villages and the post office.

b. Design an efficient algorithm to find the post-office location minimizing
the maximum distance from a village to the post office.

2. For the sake of simplicity, we assume here that no three points of a given set lie on the same line. A
modification needed for the general case is left for the exercises.
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4. a. There are several alternative ways to define a distance between two points
p1(x1, y1) and p2(x2, y2) in the Cartesian plane. In particular, the Manhat-
tan distance is defined as

dM(p1, p2) = |x1 − x2| + |y1 − y2|.
Prove that dM satisfies the following axioms, which every distance function
must satisfy:

i. dM(p1, p2) ≥ 0 for any two points p1 and p2, and dM(p1, p2) = 0 if and
only if p1 = p2

ii. dM(p1, p2) = dM(p2, p1)

iii. dM(p1, p2) ≤ dM(p1, p3) + dM(p3, p2) for any p1, p2, and p3

b. Sketch all the points in the Cartesian plane whose Manhattan distance to
the origin (0, 0) is equal to 1. Do the same for the Euclidean distance.

c. True or false: A solution to the closest-pair problem does not depend on
which of the two metrics—dE (Euclidean) or dM (Manhattan)—is used?

5. The Hamming distance between two strings of equal length is defined as the
number of positions at which the corresponding symbols are different. It is
named after Richard Hamming (1915–1998), a prominent American scientist
and engineer, who introduced it in his seminal paper on error-detecting and
error-correcting codes.
a. Does the Hamming distance satisfy the three axioms of a distance metric

listed in Problem 4?

b. What is the time efficiency class of the brute-force algorithm for the closest-
pair problem if the points in question are strings of m symbols long and the
distance between two of them is measured by the Hamming distance?

6. Odd pie fight There are n ≥ 3 people positioned on a field (Euclidean plane)
so that each has a unique nearest neighbor. Each person has a cream pie. At a
signal, everybody hurls his or her pie at the nearest neighbor. Assuming that
n is odd and that nobody can miss his or her target, true or false: There always
remains at least one person not hit by a pie. [Car79]

7. The closest-pair problem can be posed in the k-dimensional space, in which
the Euclidean distance between two points p′(x′

1, . . . , x′
k
) and p′′(x′′

1 , . . . , x′′
k
)

is defined as

d(p′, p′′) =
√∑k

s=1
(x′

s
− x′′

s
)2.

What is the time-efficiency class of the brute-force algorithm for the k-
dimensional closest-pair problem?

8. Find the convex hulls of the following sets and identify their extreme points
(if they have any):
a. a line segment
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b. a square

c. the boundary of a square

d. a straight line

9. Design a linear-time algorithm to determine two extreme points of the convex
hull of a given set of n > 1 points in the plane.

10. What modification needs to be made in the brute-force algorithm for the
convex-hull problem to handle more than two points on the same straight
line?

11. Write a program implementing the brute-force algorithm for the convex-hull
problem.

12. Consider the following small instance of the linear programming problem:

maximize 3x + 5y

subject to x + y ≤ 4

x + 3y ≤ 6

x ≥ 0, y ≥ 0.

a. Sketch, in the Cartesian plane, the problem’s feasible region, defined as
the set of points satisfying all the problem’s constraints.

b. Identify the region’s extreme points.

c. Solve this optimization problem by using the following theorem: A linear
programming problem with a nonempty bounded feasible region always
has a solution, which can be found at one of the extreme points of its
feasible region.

3.4 Exhaustive Search

Many important problems require finding an element with a special property in a
domain that grows exponentially (or faster) with an instance size. Typically, such
problems arise in situations that involve—explicitly or implicitly—combinatorial
objects such as permutations, combinations, and subsets of a given set. Many such
problems are optimization problems: they ask to find an element that maximizes
or minimizes some desired characteristic such as a path length or an assignment
cost.

Exhaustive search is simply a brute-force approach to combinatorial prob-
lems. It suggests generating each and every element of the problem domain, se-
lecting those of them that satisfy all the constraints, and then finding a desired
element (e.g., the one that optimizes some objective function). Note that although
the idea of exhaustive search is quite straightforward, its implementation typically
requires an algorithm for generating certain combinatorial objects. We delay a dis-
cussion of such algorithms until the next chapter and assume here that they exist.
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We illustrate exhaustive search by applying it to three important problems: the
traveling salesman problem, the knapsack problem, and the assignment problem.

Traveling Salesman Problem

The traveling salesman problem (TSP) has been intriguing researchers for the
last 150 years by its seemingly simple formulation, important applications, and
interesting connections to other combinatorial problems. In layman’s terms, the
problem asks to find the shortest tour through a given set of n cities that visits each
city exactly once before returning to the city where it started. The problem can be
conveniently modeled by a weighted graph, with the graph’s vertices representing
the cities and the edge weights specifying the distances. Then the problem can be
stated as the problem of finding the shortest Hamiltonian circuit of the graph. (A
Hamiltonian circuit is defined as a cycle that passes through all the vertices of the
graph exactly once. It is named after the Irish mathematician Sir William Rowan
Hamilton (1805–1865), who became interested in such cycles as an application of
his algebraic discoveries.)

It is easy to see that a Hamiltonian circuit can also be defined as a sequence of
n + 1 adjacent vertices vi0

, vi1
, . . . , vin−1

, vi0
, where the first vertex of the sequence

is the same as the last one and all the other n − 1 vertices are distinct. Further,
we can assume, with no loss of generality, that all circuits start and end at one
particular vertex (they are cycles after all, are they not?). Thus, we can get all
the tours by generating all the permutations of n − 1 intermediate cities, compute
the tour lengths, and find the shortest among them. Figure 3.7 presents a small
instance of the problem and its solution by this method.

An inspection of Figure 3.7 reveals three pairs of tours that differ only by
their direction. Hence, we could cut the number of vertex permutations by half.
We could, for example, choose any two intermediate vertices, say, b and c, and then
consider only permutations in which b precedes c. (This trick implicitly defines a
tour’s direction.)

This improvement cannot brighten the efficiency picture much, however.
The total number of permutations needed is still 1

2 (n − 1)!, which makes the
exhaustive-search approach impractical for all but very small values of n. On the
other hand, if you always see your glass as half-full, you can claim that cutting
the work by half is nothing to sneeze at, even if you solve a small instance of the
problem, especially by hand. Also note that had we not limited our investigation
to the circuits starting at the same vertex, the number of permutations would have
been even larger, by a factor of n.

Knapsack Problem

Here is another well-known problem in algorithmics. Given n items of known
weights w1, w2, . . . , wn and values v1, v2, . . . , vn and a knapsack of capacity W ,
find the most valuable subset of the items that fit into the knapsack. If you do not
like the idea of putting yourself in the shoes of a thief who wants to steal the most
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a  ---> c  ---> d  ---> b  ---> a
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I  = 2 + 8 + 1 + 7 = 18

I  = 2 + 3 + 1 + 5 = 11 optimal
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I  = 5 + 8 + 3 + 7 = 23

I  = 5 + 1 + 3 + 2 = 11

I  = 7 + 3 + 8 + 5 = 23

I  = 7 + 1 + 8 + 2 = 18

—— ———

FIGURE 3.7 Solution to a small instance of the traveling salesman problem by exhaustive
search.

valuable loot that fits into his knapsack, think about a transport plane that has to
deliver the most valuable set of items to a remote location without exceeding the
plane’s capacity. Figure 3.8a presents a small instance of the knapsack problem.

The exhaustive-search approach to this problem leads to generating all the
subsets of the set of n items given, computing the total weight of each subset in
order to identify feasible subsets (i.e., the ones with the total weight not exceeding
the knapsack capacity), and finding a subset of the largest value among them. As
an example, the solution to the instance of Figure 3.8a is given in Figure 3.8b. Since
the number of subsets of an n-element set is 2n, the exhaustive search leads to a
�(2n) algorithm, no matter how efficiently individual subsets are generated.

Thus, for both the traveling salesman and knapsack problems considered
above, exhaustive search leads to algorithms that are extremely inefficient on
every input. In fact, these two problems are the best-known examples of so-
called NP-hard problems. No polynomial-time algorithm is known for any NP-
hard problem. Moreover, most computer scientists believe that such algorithms
do not exist, although this very important conjecture has never been proven.
More-sophisticated approaches—backtracking and branch-and-bound (see Sec-
tions 12.1 and 12.2)—enable us to solve some but not all instances of these and
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item 4item 3item 2item 1knapsack

10

w1 = 7
v1 = $42

w2 = 3
v2 = $12

w3 = 4
v3 = $40

w4 = 5
v4 = $25

(a)

Subset Total weight Total value

∅ 0 $ 0
{1} 7 $42
{2} 3 $12
{3} 4 $40
{4} 5 $25

{1, 2} 10 $54
{1, 3} 11 not feasible
{1, 4} 12 not feasible
{2, 3} 7 $52
{2, 4} 8 $37{
3, 4

}
9 $65

{1, 2, 3} 14 not feasible
{1, 2, 4} 15 not feasible
{1, 3, 4} 16 not feasible
{2, 3, 4} 12 not feasible

{1, 2, 3, 4} 19 not feasible

(b)

FIGURE 3.8 (a) Instance of the knapsack problem. (b) Its solution by exhaustive search.
The information about the optimal selection is in bold.
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similar problems in less than exponential time. Alternatively, we can use one of
many approximation algorithms, such as those described in Section 12.3.

Assignment Problem

In our third example of a problem that can be solved by exhaustive search, there
are n people who need to be assigned to execute n jobs, one person per job. (That
is, each person is assigned to exactly one job and each job is assigned to exactly
one person.) The cost that would accrue if the ith person is assigned to the j th job
is a known quantity C[i, j ] for each pair i, j = 1, 2, . . . , n. The problem is to find
an assignment with the minimum total cost.

A small instance of this problem follows, with the table entries representing
the assignment costs C[i, j ]:

Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8
Person 2 6 4 3 7
Person 3 5 8 1 8
Person 4 7 6 9 4

It is easy to see that an instance of the assignment problem is completely
specified by its cost matrix C. In terms of this matrix, the problem is to select one
element in each row of the matrix so that all selected elements are in different
columns and the total sum of the selected elements is the smallest possible. Note
that no obvious strategy for finding a solution works here. For example, we cannot
select the smallest element in each row, because the smallest elements may happen
to be in the same column. In fact, the smallest element in the entire matrix need
not be a component of an optimal solution. Thus, opting for the exhaustive search
may appear as an unavoidable evil.

We can describe feasible solutions to the assignment problem as n-tuples
〈j1, . . . , jn〉 in which the ith component, i = 1, . . . , n, indicates the column of the
element selected in the ith row (i.e., the job number assigned to the ith person).
For example, for the cost matrix above, 〈2, 3, 4, 1〉 indicates the assignment of
Person 1 to Job 2, Person 2 to Job 3, Person 3 to Job 4, and Person 4 to Job 1.
The requirements of the assignment problem imply that there is a one-to-one
correspondence between feasible assignments and permutations of the first n

integers. Therefore, the exhaustive-search approach to the assignment problem
would require generating all the permutations of integers 1, 2, . . . , n, computing
the total cost of each assignment by summing up the corresponding elements of
the cost matrix, and finally selecting the one with the smallest sum. A few first
iterations of applying this algorithm to the instance given above are shown in
Figure 3.9; you are asked to complete it in the exercises.
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<1, 2, 3, 4>
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<1, 3, 2, 4>
<1, 3, 4, 2>
<1, 4, 2, 3>
<1, 4, 3, 2>

cost = 9 + 4 + 1 + 4 = 18
cost = 9 + 4 + 8 + 9 = 30
cost = 9 + 3 + 8 + 4 = 24
cost = 9 + 3 + 8 + 6 = 26
cost = 9 + 7 + 8 + 9 = 33
cost = 9 + 7 + 1 + 6 = 23

etc.

FIGURE 3.9 First few iterations of solving a small instance of the assignment problem
by exhaustive search.

Since the number of permutations to be considered for the general case of the
assignment problem is n!, exhaustive search is impractical for all but very small
instances of the problem. Fortunately, there is a much more efficient algorithm for
this problem called the Hungarian method after the Hungarian mathematicians
König and Egerváry, whose work underlies the method (see, e.g., [Kol95]).

This is good news: the fact that a problem domain grows exponentially or
faster does not necessarily imply that there can be no efficient algorithm for solving
it. In fact, we present several other examples of such problems later in the book.
However, such examples are more of an exception to the rule. More often than
not, there are no known polynomial-time algorithms for problems whose domain
grows exponentially with instance size, provided we want to solve them exactly.
And, as we mentioned above, such algorithms quite possibly do not exist.

Exercises 3.4

1. a. Assuming that each tour can be generated in constant time, what will be
the efficiency class of the exhaustive-search algorithm outlined in the text
for the traveling salesman problem?

b. If this algorithm is programmed on a computer that makes ten billion
additions per second, estimate the maximum number of cities for which
the problem can be solved in

i. 1 hour. ii. 24 hours. iii. 1 year. iv. 1 century.

2. Outline an exhaustive-search algorithm for the Hamiltonian circuit problem.

3. Outline an algorithm to determine whether a connected graph represented
by its adjacency matrix has an Eulerian circuit. What is the efficiency class of
your algorithm?

4. Complete the application of exhaustive search to the instance of the assign-
ment problem started in the text.

5. Give an example of the assignment problem whose optimal solution does not
include the smallest element of its cost matrix.
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6. Consider the partition problem: given n positive integers, partition them into
two disjoint subsets with the same sum of their elements. (Of course, the prob-
lem does not always have a solution.) Design an exhaustive-search algorithm
for this problem. Try to minimize the number of subsets the algorithm needs
to generate.

7. Consider the clique problem: given a graph G and a positive integer k, deter-
mine whether the graph contains a clique of size k, i.e., a complete subgraph
of k vertices. Design an exhaustive-search algorithm for this problem.

8. Explain how exhaustive search can be applied to the sorting problem and
determine the efficiency class of such an algorithm.

9. Eight-queens problem Consider the classic puzzle of placing eight queens on
an 8 × 8 chessboard so that no two queens are in the same row or in the same
column or on the same diagonal. How many different positions are there so
that
a. no two queens are on the same square?

b. no two queens are in the same row?

c. no two queens are in the same row or in the same column?
Also estimate how long it would take to find all the solutions to the problem by
exhaustive search based on each of these approaches on a computer capable
of checking 10 billion positions per second.

10. Magic squares A magic square of order n is an arrangement of the integers
from 1 to n2 in an n × n matrix, with each number occurring exactly once, so
that each row, each column, and each main diagonal has the same sum.
a. Prove that if a magic square of order n exists, the sum in question must be

equal to n(n2 + 1)/2.

b. Design an exhaustive-search algorithm for generating all magic squares of
order n.

c. Go to the Internet or your library and find a better algorithm for generating
magic squares.

d. Implement the two algorithms—the exhaustive search and the one you
have found—and run an experiment to determine the largest value of n

for which each of the algorithms is able to find a magic square of order n

in less than 1 minute on your computer.

11. Famous alphametic A puzzle in which the digits in a correct mathematical
expression, such as a sum, are replaced by letters is called cryptarithm; if, in
addition, the puzzle’s words make sense, it is said to be an alphametic. The
most well-known alphametic was published by the renowned British puzzlist
Henry E. Dudeney (1857–1930):
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S E N D
+ M O R E

M O N E Y

Two conditions are assumed: first, the correspondence between letters and
decimal digits is one-to-one, i.e., each letter represents one digit only and dif-
ferent letters represent different digits. Second, the digit zero does not appear
as the left-most digit in any of the numbers. To solve an alphametic means
to find which digit each letter represents. Note that a solution’s uniqueness
cannot be assumed and has to be verified by the solver.
a. Write a program for solving cryptarithms by exhaustive search. Assume

that a given cryptarithm is a sum of two words.

b. Solve Dudeney’s puzzle the way it was expected to be solved when it was
first published in 1924.

3.5 Depth-First Search and Breadth-First Search

The term “exhaustive search” can also be applied to two very important algorithms
that systematically process all vertices and edges of a graph. These two traversal
algorithms are depth-first search (DFS) and breadth-first search (BFS). These
algorithms have proved to be very useful for many applications involving graphs in
artificial intelligence and operations research. In addition, they are indispensable
for efficient investigation of fundamental properties of graphs such as connectivity
and cycle presence.

Depth-First Search

Depth-first search starts a graph’s traversal at an arbitrary vertex by marking it
as visited. On each iteration, the algorithm proceeds to an unvisited vertex that
is adjacent to the one it is currently in. (If there are several such vertices, a tie
can be resolved arbitrarily. As a practical matter, which of the adjacent unvisited
candidates is chosen is dictated by the data structure representing the graph. In
our examples, we always break ties by the alphabetical order of the vertices.) This
process continues until a dead end—a vertex with no adjacent unvisited vertices—
is encountered. At a dead end, the algorithm backs up one edge to the vertex
it came from and tries to continue visiting unvisited vertices from there. The
algorithm eventually halts after backing up to the starting vertex, with the latter
being a dead end. By then, all the vertices in the same connected component as the
starting vertex have been visited. If unvisited vertices still remain, the depth-first
search must be restarted at any one of them.

It is convenient to use a stack to trace the operation of depth-first search. We
push a vertex onto the stack when the vertex is reached for the first time (i.e., the
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FIGURE 3.10 Example of a DFS traversal. (a) Graph. (b) Traversal’s stack (the first
subscript number indicates the order in which a vertex is visited, i.e.,
pushed onto the stack; the second one indicates the order in which it
becomes a dead-end, i.e., popped off the stack). (c) DFS forest with the
tree and back edges shown with solid and dashed lines, respectively.

visit of the vertex starts), and we pop a vertex off the stack when it becomes a
dead end (i.e., the visit of the vertex ends).

It is also very useful to accompany a depth-first search traversal by construct-
ing the so-called depth-first search forest. The starting vertex of the traversal
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, it is attached as a child to the vertex from which it is
being reached. Such an edge is called a tree edge because the set of all such edges
forms a forest. The algorithm may also encounter an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree).
Such an edge is called a back edge because it connects a vertex to its ancestor,
other than the parent, in the depth-first search forest. Figure 3.10 provides an ex-
ample of a depth-first search traversal, with the traversal stack and corresponding
depth-first search forest shown as well.

Here is pseudocode of the depth-first search.

ALGORITHM DFS(G)

//Implements a depth-first search traversal of a given graph
//Input: Graph G = 〈V, E〉
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do

if v is marked with 0
dfs(v)
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dfs(v)

//visits recursively all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are encountered
//via global variable count

count ← count + 1; mark v with count

for each vertex w in V adjacent to v do
if w is marked with 0

dfs(w)

The brevity of the DFS pseudocode and the ease with which it can be per-
formed by hand may create a wrong impression about the level of sophistication
of this algorithm. To appreciate its true power and depth, you should trace the
algorithm’s action by looking not at a graph’s diagram but at its adjacency matrix
or adjacency lists. (Try it for the graph in Figure 3.10 or a smaller example.)

How efficient is depth-first search? It is not difficult to see that this algorithm
is, in fact, quite efficient since it takes just the time proportional to the size of the
data structure used for representing the graph in question. Thus, for the adjacency
matrix representation, the traversal time is in �(|V |2), and for the adjacency list
representation, it is in �(|V | + |E|) where |V | and |E| are the number of the
graph’s vertices and edges, respectively.

A DFS forest, which is obtained as a by-product of a DFS traversal, deserves a
few comments, too. To begin with, it is not actually a forest. Rather, we can look at
it as the given graph with its edges classified by the DFS traversal into two disjoint
classes: tree edges and back edges. (No other types are possible for a DFS forest
of an undirected graph.) Again, tree edges are edges used by the DFS traversal to
reach previously unvisited vertices. If we consider only the edges in this class, we
will indeed get a forest. Back edges connect vertices to previously visited vertices
other than their immediate predecessors in the traversal. They connect vertices to
their ancestors in the forest other than their parents.

A DFS traversal itself and the forest-like representation of the graph it pro-
vides have proved to be extremely helpful for the development of efficient al-
gorithms for checking many important properties of graphs.3 Note that the DFS
yields two orderings of vertices: the order in which the vertices are reached for the
first time (pushed onto the stack) and the order in which the vertices become dead
ends (popped off the stack). These orders are qualitatively different, and various
applications can take advantage of either of them.

Important elementary applications of DFS include checking connectivity and
checking acyclicity of a graph. Since dfs halts after visiting all the vertices con-

3. The discovery of several such applications was an important breakthrough achieved by the two
American computer scientists John Hopcroft and Robert Tarjan in the 1970s. For this and other
contributions, they were given the Turing Award—the most prestigious prize in the computing field
[Hop87, Tar87].
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nected by a path to the starting vertex, checking a graph’s connectivity can be
done as follows. Start a DFS traversal at an arbitrary vertex and check, after
the algorithm halts, whether all the vertices of the graph will have been vis-
ited. If they have, the graph is connected; otherwise, it is not connected. More
generally, we can use DFS for identifying connected components of a graph
(how?).

As for checking for a cycle presence in a graph, we can take advantage of the
graph’s representation in the form of a DFS forest. If the latter does not have back
edges, the graph is clearly acyclic. If there is a back edge from some vertex u to its
ancestor v (e.g., the back edge from d to a in Figure 3.10c), the graph has a cycle
that comprises the path from v to u via a sequence of tree edges in the DFS forest
followed by the back edge from u to v.

You will find a few other applications of DFS later in the book, although
more sophisticated applications, such as finding articulation points of a graph,
are not included. (A vertex of a connected graph is said to be its articulation
point if its removal with all edges incident to it breaks the graph into disjoint
pieces.)

Breadth-First Search

If depth-first search is a traversal for the brave (the algorithm goes as far from
“home” as it can), breadth-first search is a traversal for the cautious. It proceeds in
a concentric manner by visiting first all the vertices that are adjacent to a starting
vertex, then all unvisited vertices two edges apart from it, and so on, until all
the vertices in the same connected component as the starting vertex are visited.
If there still remain unvisited vertices, the algorithm has to be restarted at an
arbitrary vertex of another connected component of the graph.

It is convenient to use a queue (note the difference from depth-first search!)
to trace the operation of breadth-first search. The queue is initialized with the
traversal’s starting vertex, which is marked as visited. On each iteration, the
algorithm identifies all unvisited vertices that are adjacent to the front vertex,
marks them as visited, and adds them to the queue; after that, the front vertex is
removed from the queue.

Similarly to a DFS traversal, it is useful to accompany a BFS traversal by con-
structing the so-called breadth-first search forest. The traversal’s starting vertex
serves as the root of the first tree in such a forest. Whenever a new unvisited vertex
is reached for the first time, the vertex is attached as a child to the vertex it is being
reached from with an edge called a tree edge. If an edge leading to a previously
visited vertex other than its immediate predecessor (i.e., its parent in the tree)
is encountered, the edge is noted as a cross edge. Figure 3.11 provides an exam-
ple of a breadth-first search traversal, with the traversal queue and corresponding
breadth-first search forest shown.
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FIGURE 3.11 Example of a BFS traversal. (a) Graph. (b) Traversal queue, with the
numbers indicating the order in which the vertices are visited, i.e., added
to (and removed from) the queue. (c) BFS forest with the tree and cross
edges shown with solid and dotted lines, respectively.

Here is pseudocode of the breadth-first search.

ALGORITHM BFS(G)

//Implements a breadth-first search traversal of a given graph
//Input: Graph G = 〈V, E〉
//Output: Graph G with its vertices marked with consecutive integers
// in the order they are visited by the BFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count ← 0
for each vertex v in V do

if v is marked with 0
bfs(v)

bfs(v)

//visits all the unvisited vertices connected to vertex v

//by a path and numbers them in the order they are visited
//via global variable count

count ← count + 1; mark v with count and initialize a queue with v

while the queue is not empty do
for each vertex w in V adjacent to the front vertex do

if w is marked with 0
count ← count + 1; mark w with count

add w to the queue
remove the front vertex from the queue
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FIGURE 3.12 Illustration of the BFS-based algorithm for finding a minimum-edge path.
(a) Graph. (b) Part of its BFS tree that identifies the minimum-edge path
from a to g.

Breadth-first search has the same efficiency as depth-first search: it is in
�(|V |2) for the adjacency matrix representation and in �(|V | + |E|) for the adja-
cency list representation. Unlike depth-first search, it yields a single ordering of
vertices because the queue is a FIFO (first-in first-out) structure and hence the
order in which vertices are added to the queue is the same order in which they
are removed from it. As to the structure of a BFS forest of an undirected graph,
it can also have two kinds of edges: tree edges and cross edges. Tree edges are the
ones used to reach previously unvisited vertices. Cross edges connect vertices to
those visited before, but, unlike back edges in a DFS tree, they connect vertices
either on the same or adjacent levels of a BFS tree.

BFS can be used to check connectivity and acyclicity of a graph, essentially
in the same manner as DFS can. It is not applicable, however, for several less
straightforward applications such as finding articulation points. On the other hand,
it can be helpful in some situations where DFS cannot. For example, BFS can
be used for finding a path with the fewest number of edges between two given
vertices. To do this, we start a BFS traversal at one of the two vertices and stop
it as soon as the other vertex is reached. The simple path from the root of the
BFS tree to the second vertex is the path sought. For example, path a − b − c − g

in the graph in Figure 3.12 has the fewest number of edges among all the paths
between vertices a and g. Although the correctness of this application appears to
stem immediately from the way BFS operates, a mathematical proof of its validity
is not quite elementary (see, e.g., [Cor09, Section 22.2]).

Table 3.1 summarizes the main facts about depth-first search and breadth-first
search.
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TABLE 3.1 Main facts about depth-first search (DFS)
and breadth-first search (BFS)

DFS BFS

Data structure a stack a queue
Number of vertex orderings two orderings one ordering
Edge types (undirected graphs) tree and back edges tree and cross edges
Applications connectivity, connectivity,

acyclicity, acyclicity,
articulation points minimum-edge paths

Efficiency for adjacency matrix �(|V 2|) �(|V 2|)
Efficiency for adjacency lists �(|V | + |E|) �(|V | + |E|)

Exercises 3.5

1. Consider the following graph.
bf c g

ead

a. Write down the adjacency matrix and adjacency lists specifying this graph.
(Assume that the matrix rows and columns and vertices in the adjacency
lists follow in the alphabetical order of the vertex labels.)

b. Starting at vertex a and resolving ties by the vertex alphabetical order,
traverse the graph by depth-first search and construct the corresponding
depth-first search tree. Give the order in which the vertices were reached
for the first time (pushed onto the traversal stack) and the order in which
the vertices became dead ends (popped off the stack).

2. If we define sparse graphs as graphs for which |E| ∈ O(|V |), which implemen-
tation of DFS will have a better time efficiency for such graphs, the one that
uses the adjacency matrix or the one that uses the adjacency lists?

3. Let G be a graph with n vertices and m edges.
a. True or false: All its DFS forests (for traversals starting at different ver-

tices) will have the same number of trees?

b. True or false: All its DFS forests will have the same number of tree edges
and the same number of back edges?

4. Traverse the graph of Problem 1 by breadth-first search and construct the
corresponding breadth-first search tree. Start the traversal at vertex a and
resolve ties by the vertex alphabetical order.
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5. Prove that a cross edge in a BFS tree of an undirected graph can connect
vertices only on either the same level or on two adjacent levels of a BFS tree.

6. a. Explain how one can check a graph’s acyclicity by using breadth-first
search.

b. Does either of the two traversals—DFS or BFS—always find a cycle faster
than the other? If you answer yes, indicate which of them is better and
explain why it is the case; if you answer no, give two examples supporting
your answer.

7. Explain how one can identify connected components of a graph by using
a. a depth-first search.

b. a breadth-first search.

8. A graph is said to be bipartite if all its vertices can be partitioned into two
disjoint subsets X and Y so that every edge connects a vertex in X with a vertex
in Y . (One can also say that a graph is bipartite if its vertices can be colored in
two colors so that every edge has its vertices colored in different colors; such
graphs are also called 2-colorable.) For example, graph (i) is bipartite while
graph (ii) is not.

x1 y1 x3

y2 x2 y3

(i) (ii)

a

c

b

d

a. Design a DFS-based algorithm for checking whether a graph is bipartite.

b. Design a BFS-based algorithm for checking whether a graph is bipartite.

9. Write a program that, for a given graph, outputs:
a. vertices of each connected component

b. its cycle or a message that the graph is acyclic

10. One can model a maze by having a vertex for a starting point, a finishing point,
dead ends, and all the points in the maze where more than one path can be
taken, and then connecting the vertices according to the paths in the maze.
a. Construct such a graph for the following maze.
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b. Which traversal—DFS or BFS—would you use if you found yourself in a
maze and why?

11. Three Jugs Siméon Denis Poisson (1781–1840), a famous French mathemati-
cian and physicist, is said to have become interested in mathematics after
encountering some version of the following old puzzle. Given an 8-pint jug
full of water and two empty jugs of 5- and 3-pint capacity, get exactly 4 pints
of water in one of the jugs by completely filling up and/or emptying jugs into
others. Solve this puzzle by using breadth-first search.

SUMMARY

Brute force is a straightforward approach to solving a problem, usually directly
based on the problem statement and definitions of the concepts involved.

The principal strengths of the brute-force approach are wide applicability and
simplicity; its principal weakness is the subpar efficiency of most brute-force
algorithms.

A first application of the brute-force approach often results in an algorithm
that can be improved with a modest amount of effort.

The following noted algorithms can be considered as examples of the brute-
force approach:
. definition-based algorithm for matrix multiplication
. selection sort
. sequential search
. straightforward string-matching algorithm

Exhaustive search is a brute-force approach to combinatorial problems. It
suggests generating each and every combinatorial object of the problem,
selecting those of them that satisfy all the constraints, and then finding a
desired object.

The traveling salesman problem, the knapsack problem, and the assignment
problem are typical examples of problems that can be solved, at least
theoretically, by exhaustive-search algorithms.

Exhaustive search is impractical for all but very small instances of problems
it can be applied to.

Depth-first search (DFS) and breadth-first search (BFS) are two principal
graph-traversal algorithms. By representing a graph in a form of a depth-first
or breadth-first search forest, they help in the investigation of many important
properties of the graph. Both algorithms have the same time efficiency:
�(|V |2) for the adjacency matrix representation and �(|V | + |E|) for the
adjacency list representation.



4
Decrease-and-Conquer

Plutarch says that Sertorius, in order to teach his soldiers that perseverance
and wit are better than brute force, had two horses brought before them,
and set two men to pull out their tails. One of the men was a burly Hercules,
who tugged and tugged, but all to no purpose; the other was a sharp, weasel-
faced tailor, who plucked one hair at a time, amidst roars of laughter, and
soon left the tail quite bare.

—E. Cobham Brewer, Dictionary of Phrase and Fable, 1898

The decrease-and-conquer technique is based on exploiting the relationship
between a solution to a given instance of a problem and a solution to its

smaller instance. Once such a relationship is established, it can be exploited either
top down or bottom up. The former leads naturally to a recursive implementa-
tion, although, as one can see from several examples in this chapter, an ultimate
implementation may well be nonrecursive. The bottom-up variation is usually
implemented iteratively, starting with a solution to the smallest instance of the
problem; it is called sometimes the incremental approach.

There are three major variations of decrease-and-conquer:

decrease by a constant
decrease by a constant factor
variable size decrease

In the decrease-by-a-constant variation, the size of an instance is reduced
by the same constant on each iteration of the algorithm. Typically, this constant
is equal to one (Figure 4.1), although other constant size reductions do happen
occasionally.

Consider, as an example, the exponentiation problem of computing an where
a �= 0 and n is a nonnegative integer. The relationship between a solution to an
instance of size n and an instance of size n − 1 is obtained by the obvious formula
an = an−1 . a. So the function f (n) = an can be computed either “top down” by
using its recursive definition

131
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problem of size n

subproblem
of size n –1

solution to
the subproblem

solution to
the original problem

FIGURE 4.1 Decrease-(by one)-and-conquer technique.

f (n) =
{

f (n − 1) . a if n > 0,
1 if n = 0,

(4.1)

or “bottom up” by multiplying 1 by a n times. (Yes, it is the same as the brute-force
algorithm, but we have come to it by a different thought process.) More interesting
examples of decrease-by-one algorithms appear in Sections 4.1–4.3.

The decrease-by-a-constant-factor technique suggests reducing a problem
instance by the same constant factor on each iteration of the algorithm. In most
applications, this constant factor is equal to two. (Can you give an example of such
an algorithm?) The decrease-by-half idea is illustrated in Figure 4.2.

For an example, let us revisit the exponentiation problem. If the instance of
size n is to compute an, the instance of half its size is to compute an/2, with the
obvious relationship between the two: an = (an/2)2. But since we consider here
instances with integer exponents only, the former does not work for odd n. If n is
odd, we have to compute an−1 by using the rule for even-valued exponents and
then multiply the result by a. To summarize, we have the following formula:
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problem        of size n

subproblem
of size n/2

solution to
the subproblem

solution to
the original problem

FIGURE 4.2 Decrease-(by half)-and-conquer technique.

an =
⎧⎨
⎩

(an/2)2 if n is even and positive,
(a(n−1)/2)2 . a if n is odd,
1 if n = 0.

(4.2)

If we compute an recursively according to formula (4.2) and measure the algo-
rithm’s efficiency by the number of multiplications, we should expect the algorithm
to be in �(log n) because, on each iteration, the size is reduced by about a half at
the expense of one or two multiplications.

A few other examples of decrease-by-a-constant-factor algorithms are given
in Section 4.4 and its exercises. Such algorithms are so efficient, however, that
there are few examples of this kind.

Finally, in the variable-size-decrease variety of decrease-and-conquer, the
size-reduction pattern varies from one iteration of an algorithm to another. Eu-
clid’s algorithm for computing the greatest common divisor provides a good ex-
ample of such a situation. Recall that this algorithm is based on the formula

gcd(m, n) = gcd(n, m mod n).
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Though the value of the second argument is always smaller on the right-hand side
than on the left-hand side, it decreases neither by a constant nor by a constant
factor. A few other examples of such algorithms appear in Section 4.5.

4.1 Insertion Sort

In this section, we consider an application of the decrease-by-one technique to
sorting an array A[0..n − 1]. Following the technique’s idea, we assume that the
smaller problem of sorting the array A[0..n − 2] has already been solved to give
us a sorted array of size n − 1: A[0] ≤ . . . ≤ A[n − 2]. How can we take advantage
of this solution to the smaller problem to get a solution to the original problem
by taking into account the element A[n − 1]? Obviously, all we need is to find an
appropriate position for A[n − 1] among the sorted elements and insert it there.
This is usually done by scanning the sorted subarray from right to left until the
first element smaller than or equal to A[n − 1] is encountered to insert A[n − 1]
right after that element. The resulting algorithm is called straight insertion sort
or simply insertion sort.

Though insertion sort is clearly based on a recursive idea, it is more efficient
to implement this algorithm bottom up, i.e., iteratively. As shown in Figure 4.3,
starting with A[1]and ending with A[n − 1], A[i] is inserted in its appropriate place
among the first i elements of the array that have been already sorted (but, unlike
selection sort, are generally not in their final positions).

Here is pseudocode of this algorithm.

ALGORITHM InsertionSort(A[0..n − 1])

//Sorts a given array by insertion sort
//Input: An array A[0..n − 1] of n orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
for i ← 1 to n − 1 do

v ← A[i]
j ← i − 1
while j ≥ 0 and A[j ] > v do

A[j + 1] ← A[j ]
j ← j − 1

A[j + 1] ← v

A[0] ≤ . . . ≤ A[ j] < A[ j  + 1] ≤ . . . ≤ A[i  – 1] ⏐ A[i] . . . A[n – 1]

smaller than or equal to A[i] greater than A[i]

FIGURE 4.3 Iteration of insertion sort: A[i] is inserted in its proper position among the
preceding elements previously sorted.
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FIGURE 4.4 Example of sorting with insertion sort. A vertical bar separates the sorted
part of the array from the remaining elements; the element being inserted
is in bold.

The operation of the algorithm is illustrated in Figure 4.4.
The basic operation of the algorithm is the key comparison A[j ]> v. (Why not

j ≥ 0? Because it is almost certainly faster than the former in an actual computer
implementation. Moreover, it is not germane to the algorithm: a better imple-
mentation with a sentinel—see Problem 8 in this section’s exercises—eliminates
it altogether.)

The number of key comparisons in this algorithm obviously depends on the
nature of the input. In the worst case, A[j ] > v is executed the largest number
of times, i.e., for every j = i − 1, . . . , 0. Since v = A[i], it happens if and only if
A[j ] > A[i] for j = i − 1, . . . , 0. (Note that we are using the fact that on the ith
iteration of insertion sort all the elements preceding A[i] are the first i elements in
the input, albeit in the sorted order.) Thus, for the worst-case input, we get A[0] >

A[1] (for i = 1), A[1] > A[2] (for i = 2), . . . , A[n − 2] > A[n − 1] (for i = n − 1).
In other words, the worst-case input is an array of strictly decreasing values. The
number of key comparisons for such an input is

Cworst(n) =
n−1∑
i=1

i−1∑
j=0

1 =
n−1∑
i=1

i = (n − 1)n
2

∈ �(n2).

Thus, in the worst case, insertion sort makes exactly the same number of compar-
isons as selection sort (see Section 3.1).

In the best case, the comparison A[j ] > v is executed only once on every
iteration of the outer loop. It happens if and only if A[i − 1] ≤ A[i] for every
i = 1, . . . , n − 1, i.e., if the input array is already sorted in nondecreasing order.
(Though it “makes sense” that the best case of an algorithm happens when the
problem is already solved, it is not always the case, as you are going to see in our
discussion of quicksort in Chapter 5.) Thus, for sorted arrays, the number of key
comparisons is

Cbest(n) =
n−1∑
i=1

1 = n − 1 ∈ �(n).
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This very good performance in the best case of sorted arrays is not very useful by
itself, because we cannot expect such convenient inputs. However, almost-sorted
files do arise in a variety of applications, and insertion sort preserves its excellent
performance on such inputs.

A rigorous analysis of the algorithm’s average-case efficiency is based on
investigating the number of element pairs that are out of order (see Problem 11 in
this section’s exercises). It shows that on randomly ordered arrays, insertion sort
makes on average half as many comparisons as on decreasing arrays, i.e.,

Cavg(n) ≈ n2

4
∈ �(n2).

This twice-as-fast average-case performance coupled with an excellent efficiency
on almost-sorted arrays makes insertion sort stand out among its principal com-
petitors among elementary sorting algorithms, selection sort and bubble sort. In
addition, its extension named shellsort, after its inventor D. L. Shell [She59], gives
us an even better algorithm for sorting moderately large files (see Problem 12 in
this section’s exercises).

Exercises 4.1

1. Ferrying soldiers A detachment of n soldiers must cross a wide and deep
river with no bridge in sight. They notice two 12-year-old boys playing in a
rowboat by the shore. The boat is so tiny, however, that it can only hold two
boys or one soldier. How can the soldiers get across the river and leave the
boys in joint possession of the boat? How many times need the boat pass from
shore to shore?

2. Alternating glasses
a. There are 2n glasses standing next to each other in a row, the first n of them

filled with a soda drink and the remaining n glasses empty. Make the glasses
alternate in a filled-empty-filled-empty pattern in the minimum number of
glass moves. [Gar78]

b. Solve the same problem if 2n glasses—n with a drink and n empty—are
initially in a random order.

3. Marking cells Design an algorithm for the following task. For any even n,

mark n cells on an infinite sheet of graph paper so that each marked cell has an
odd number of marked neighbors. Two cells are considered neighbors if they
are next to each other either horizontally or vertically but not diagonally. The
marked cells must form a contiguous region, i.e., a region in which there is a
path between any pair of marked cells that goes through a sequence of marked
neighbors. [Kor05]
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4. Design a decrease-by-one algorithm for generating the power set of a set of n

elements. (The power set of a set S is the set of all the subsets of S, including
the empty set and S itself.)

5. Consider the following algorithm to check connectivity of a graph defined by
its adjacency matrix.

ALGORITHM Connected(A[0..n − 1, 0..n − 1])

//Input: Adjacency matrix A[0..n − 1, 0..n − 1]) of an undirected graph G

//Output: 1 (true) if G is connected and 0 (false) if it is not
if n = 1 return 1 //one-vertex graph is connected by definition
else

if not Connected(A[0..n − 2, 0..n − 2]) return 0
else for j ← 0 to n − 2 do

if A[n − 1, j ] return 1
return 0

Does this algorithm work correctly for every undirected graph with n > 0
vertices? If you answer yes, indicate the algorithm’s efficiency class in the
worst case; if you answer no, explain why.

6. Team ordering You have the results of a completed round-robin tournament
in which n teams played each other once. Each game ended either with a
victory for one of the teams or with a tie. Design an algorithm that lists the
teams in a sequence so that every team did not lose the game with the team
listed immediately after it. What is the time efficiency class of your algorithm?

7. Apply insertion sort to sort the list E, X, A, M , P , L, E in alphabetical order.

8. a. What sentinel should be put before the first element of an array being
sorted in order to avoid checking the in-bound condition j ≥ 0 on each
iteration of the inner loop of insertion sort?

b. Is the sentinel version in the same efficiency class as the original version?

9. Is it possible to implement insertion sort for sorting linked lists? Will it have
the same O(n2) time efficiency as the array version?

10. Compare the text’s implementation of insertion sort with the following ver-
sion.

ALGORITHM InsertSort2(A[0..n − 1])

for i ← 1 to n − 1 do
j ← i − 1
while j ≥ 0 and A[j ] > A[j + 1] do

swap(A[j ], A[j + 1])
j ← j − 1
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What is the time efficiency of this algorithm? How is it compared to that
of the version given in Section 4.1?

11. Let A[0..n − 1] be an array of n sortable elements. (For simplicity, you may
assume that all the elements are distinct.) A pair (A[i], A[j ]) is called an
inversion if i < j and A[i] > A[j ].
a. What arrays of size n have the largest number of inversions and what is this

number? Answer the same questions for the smallest number of inversions.

b. Show that the average-case number of key comparisons in insertion sort is
given by the formula

Cavg(n) ≈ n2

4
.

12. Shellsort (more accurately Shell’s sort) is an important sorting algorithm that
works by applying insertion sort to each of several interleaving sublists of a
given list. On each pass through the list, the sublists in question are formed
by stepping through the list with an increment hi taken from some predefined
decreasing sequence of step sizes, h1 > . . . > hi > . . . > 1, which must end with
1. (The algorithm works for any such sequence, though some sequences are
known to yield a better efficiency than others. For example, the sequence 1,
4, 13, 40, 121, . . . , used, of course, in reverse, is known to be among the best
for this purpose.)
a. Apply shellsort to the list

S, H, E, L, L, S, O, R, T , I, S, U, S, E, F, U, L

b. Is shellsort a stable sorting algorithm?

c. Implement shellsort, straight insertion sort, selection sort, and bubble sort
in the language of your choice and compare their performance on random
arrays of sizes 10n for n = 2, 3, 4, 5, and 6 as well as on increasing and
decreasing arrays of these sizes.

4.2 Topological Sorting

In this section, we discuss an important problem for directed graphs, with a
variety of applications involving prerequisite-restricted tasks. Before we pose this
problem, though, let us review a few basic facts about directed graphs themselves.
A directed graph, or digraph for short, is a graph with directions specified for all
its edges (Figure 4.5a is an example). The adjacency matrix and adjacency lists are
still two principal means of representing a digraph. There are only two notable
differences between undirected and directed graphs in representing them: (1) the
adjacency matrix of a directed graph does not have to be symmetric; (2) an edge
in a directed graph has just one (not two) corresponding nodes in the digraph’s
adjacency lists.
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FIGURE 4.5 (a) Digraph. (b) DFS forest of the digraph for the DFS traversal started at a.

Depth-first search and breadth-first search are principal traversal algorithms
for traversing digraphs as well, but the structure of corresponding forests can be
more complex than for undirected graphs. Thus, even for the simple example of
Figure 4.5a, the depth-first search forest (Figure 4.5b) exhibits all four types of
edges possible in a DFS forest of a directed graph: tree edges (ab, bc, de), back
edges (ba) from vertices to their ancestors, forward edges (ac) from vertices to
their descendants in the tree other than their children, and cross edges (dc), which
are none of the aforementioned types.

Note that a back edge in a DFS forest of a directed graph can connect a vertex
to its parent. Whether or not it is the case, the presence of a back edge indicates
that the digraph has a directed cycle. A directed cycle in a digraph is a sequence
of three or more of its vertices that starts and ends with the same vertex and in
which every vertex is connected to its immediate predecessor by an edge directed
from the predecessor to the successor. For example, a, b, a is a directed cycle in
the digraph in Figure 4.5a. Conversely, if a DFS forest of a digraph has no back
edges, the digraph is a dag, an acronym for directed acyclic graph.

Edge directions lead to new questions about digraphs that are either meaning-
less or trivial for undirected graphs. In this section, we discuss one such question.
As a motivating example, consider a set of five required courses {C1, C2, C3, C4,
C5} a part-time student has to take in some degree program. The courses can be
taken in any order as long as the following course prerequisites are met: C1 and
C2 have no prerequisites, C3 requires C1 and C2, C4 requires C3, and C5 requires
C3 and C4. The student can take only one course per term. In which order should
the student take the courses?

The situation can be modeled by a digraph in which vertices represent courses
and directed edges indicate prerequisite requirements (Figure 4.6). In terms of
this digraph, the question is whether we can list its vertices in such an order that
for every edge in the graph, the vertex where the edge starts is listed before the
vertex where the edge ends. (Can you find such an ordering of this digraph’s
vertices?) This problem is called topological sorting. It can be posed for an
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C1 C4

C2 C5

C3

FIGURE 4.6 Digraph representing the prerequisite structure of five courses.

C1 C51
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C33
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The popping-off order:
C5, C4, C3, C1, C2
The topologically sorted list:
C 2

C3

C4

C5C2

FIGURE 4.7 (a) Digraph for which the topological sorting problem needs to be solved.
(b) DFS traversal stack with the subscript numbers indicating the popping-
off order. (c) Solution to the problem.

arbitrary digraph, but it is easy to see that the problem cannot have a solution
if a digraph has a directed cycle. Thus, for topological sorting to be possible, a
digraph in question must be a dag. It turns out that being a dag is not only necessary
but also sufficient for topological sorting to be possible; i.e., if a digraph has no
directed cycles, the topological sorting problem for it has a solution. Moreover,
there are two efficient algorithms that both verify whether a digraph is a dag
and, if it is, produce an ordering of vertices that solves the topological sorting
problem.

The first algorithm is a simple application of depth-first search: perform a DFS
traversal and note the order in which vertices become dead-ends (i.e., popped
off the traversal stack). Reversing this order yields a solution to the topological
sorting problem, provided, of course, no back edge has been encountered during
the traversal. If a back edge has been encountered, the digraph is not a dag, and
topological sorting of its vertices is impossible.

Why does the algorithm work? When a vertex v is popped off a DFS stack,
no vertex u with an edge from u to v can be among the vertices popped off before
v. (Otherwise, (u, v) would have been a back edge.) Hence, any such vertex u will
be listed after v in the popped-off order list, and before v in the reversed list.

Figure 4.7 illustrates an application of this algorithm to the digraph in Fig-
ure 4.6. Note that in Figure 4.7c, we have drawn the edges of the digraph, and
they all point from left to right as the problem’s statement requires. It is a con-
venient way to check visually the correctness of a solution to an instance of the
topological sorting problem.
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C1

delete C1 delete C2

delete C3

The solution obtained is C1, C2, C3, C4, C5

delete C4 delete C5

C4 C4

C4

C5

C5 C5

C5

C3

C4

C5

C3

C2

C3

C2

FIGURE 4.8 Illustration of the source-removal algorithm for the topological sorting
problem. On each iteration, a vertex with no incoming edges is deleted
from the digraph.

The second algorithm is based on a direct implementation of the decrease-(by
one)-and-conquer technique: repeatedly, identify in a remaining digraph a source,
which is a vertex with no incoming edges, and delete it along with all the edges
outgoing from it. (If there are several sources, break the tie arbitrarily. If there
are none, stop because the problem cannot be solved—see Problem 6a in this
section’s exercises.) The order in which the vertices are deleted yields a solution
to the topological sorting problem. The application of this algorithm to the same
digraph representing the five courses is given in Figure 4.8.

Note that the solution obtained by the source-removal algorithm is different
from the one obtained by the DFS-based algorithm. Both of them are correct, of
course; the topological sorting problem may have several alternative solutions.

The tiny size of the example we used might create a wrong impression about
the topological sorting problem. But imagine a large project—e.g., in construction,
research, or software development—that involves a multitude of interrelated tasks
with known prerequisites. The first thing to do in such a situation is to make sure
that the set of given prerequisites is not contradictory. The convenient way of
doing this is to solve the topological sorting problem for the project’s digraph.
Only then can one start thinking about scheduling tasks to, say, minimize the total
completion time of the project. This would require, of course, other algorithms that
you can find in general books on operations research or in special ones on CPM
(Critical Path Method) and PERT (Program Evaluation and Review Technique)
methodologies.

As to applications of topological sorting in computer science, they include
instruction scheduling in program compilation, cell evaluation ordering in spread-
sheet formulas, and resolving symbol dependencies in linkers.
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Exercises 4.2

1. Apply the DFS-based algorithm to solve the topological sorting problem for
the following digraphs:

a a b cb

c e

g
gfe

f

d

d

(b)(a)

2. a. Prove that the topological sorting problem has a solution if and only if it is
a dag.

b. For a digraph with n vertices, what is the largest number of distinct solutions
the topological sorting problem can have?

3. a. What is the time efficiency of the DFS-based algorithm for topological
sorting?

b. How can one modify the DFS-based algorithm to avoid reversing the
vertex ordering generated by DFS?

4. Can one use the order in which vertices are pushed onto the DFS stack
(instead of the order they are popped off it) to solve the topological sorting
problem?

5. Apply the source-removal algorithm to the digraphs of Problem 1 above.

6. a. Prove that a nonempty dag must have at least one source.

b. How would you find a source (or determine that such a vertex does not
exist) in a digraph represented by its adjacency matrix? What is the time
efficiency of this operation?

c. How would you find a source (or determine that such a vertex does not
exist) in a digraph represented by its adjacency lists? What is the time
efficiency of this operation?

7. Can you implement the source-removal algorithm for a digraph represented
by its adjacency lists so that its running time is in O(|V | + |E|)?

8. Implement the two topological sorting algorithms in the language of your
choice. Run an experiment to compare their running times.

9. A digraph is called strongly connected if for any pair of two distinct vertices u

and v there exists a directed path from u to v and a directed path from v to u. In
general, a digraph’s vertices can be partitioned into disjoint maximal subsets
of vertices that are mutually accessible via directed paths; these subsets are
called strongly connected components of the digraph. There are two DFS-
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based algorithms for identifying strongly connected components. Here is the
simpler (but somewhat less efficient) one of the two:

Step 1 Perform a DFS traversal of the digraph given and number its
vertices in the order they become dead ends.

Step 2 Reverse the directions of all the edges of the digraph.
Step 3 Perform a DFS traversal of the new digraph by starting (and, if

necessary, restarting) the traversal at the highest numbered vertex
among still unvisited vertices.

The strongly connected components are exactly the vertices of the DFS
trees obtained during the last traversal.
a. Apply this algorithm to the following digraph to determine its strongly

connected components:

a b c

g h

d e

f

b. What is the time efficiency class of this algorithm? Give separate answers
for the adjacency matrix representation and adjacency list representation
of an input digraph.

c. How many strongly connected components does a dag have?

10. Spider’s web A spider sits at the bottom (point S) of its web, and a fly sits at
the top (F). How many different ways can the spider reach the fly by moving
along the web’s lines in the directions indicated by the arrows? [Kor05]

F

S
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4.3 Algorithms for Generating Combinatorial Objects

In this section, we keep our promise to discuss algorithms for generating combi-
natorial objects. The most important types of combinatorial objects are permuta-
tions, combinations, and subsets of a given set. They typically arise in problems
that require a consideration of different choices. We already encountered them in
Chapter 3 when we discussed exhaustive search. Combinatorial objects are stud-
ied in a branch of discrete mathematics called combinatorics. Mathematicians, of
course, are primarily interested in different counting formulas; we should be grate-
ful for such formulas because they tell us how many items need to be generated. In
particular, they warn us that the number of combinatorial objects typically grows
exponentially or even faster as a function of the problem size. But our primary
interest here lies in algorithms for generating combinatorial objects, not just in
counting them.

Generating Permutations

We start with permutations. For simplicity, we assume that the underlying set
whose elements need to be permuted is simply the set of integers from 1 to n;
more generally, they can be interpreted as indices of elements in an n-element set
{a1, . . . , an}. What would the decrease-by-one technique suggest for the problem
of generating all n! permutations of {1, . . . , n}? The smaller-by-one problem is to
generate all (n − 1)! permutations. Assuming that the smaller problem is solved,
we can get a solution to the larger one by inserting n in each of the n possible
positions among elements of every permutation of n − 1 elements. All the permu-
tations obtained in this fashion will be distinct (why?), and their total number will
be n(n − 1)!= n!. Hence, we will obtain all the permutations of {1, . . . , n}.

We can insert n in the previously generated permutations either left to right
or right to left. It turns out that it is beneficial to start with inserting n into
12 . . . (n − 1) by moving right to left and then switch direction every time a new
permutation of {1, . . . , n − 1} needs to be processed. An example of applying this
approach bottom up for n = 3 is given in Figure 4.9.

The advantage of this order of generating permutations stems from the fact
that it satisfies the minimal-change requirement: each permutation can be ob-
tained from its immediate predecessor by exchanging just two elements in it. (For
the method being discussed, these two elements are always adjacent to each other.

start 1
insert 2 into 1 right to left 12 21
insert 3 into 12 right to left 123 132 312
insert 3 into 21 left to right 321 231 213

FIGURE 4.9 Generating permutations bottom up.
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Check this for the permutations generated in Figure 4.9.) The minimal-change re-
quirement is beneficial both for the algorithm’s speed and for applications using
the permutations. For example, in Section 3.4, we needed permutations of cities
to solve the traveling salesman problem by exhaustive search. If such permuta-
tions are generated by a minimal-change algorithm, we can compute the length of
a new tour from the length of its predecessor in constant rather than linear time
(how?).

It is possible to get the same ordering of permutations of n elements without
explicitly generating permutations for smaller values of n. It can be done by
associating a direction with each element k in a permutation. We indicate such
a direction by a small arrow written above the element in question, e.g.,

3
→

2
←

4
→

1
←
.

The element k is said to be mobile in such an arrow-marked permutation if its
arrow points to a smaller number adjacent to it. For example, for the permutation
3
→

2
←

4
→

1
←
, 3 and 4 are mobile while 2 and 1 are not. Using the notion of a mobile

element, we can give the following description of the Johnson-Trotter algorithm
for generating permutations.

ALGORITHM JohnsonTrotter(n)

//Implements Johnson-Trotter algorithm for generating permutations
//Input: A positive integer n

//Output: A list of all permutations of {1, . . . , n}
initialize the first permutation with 1

←
2
←

. . . n
←

while the last permutation has a mobile element do
find its largest mobile element k

swap k with the adjacent element k’s arrow points to
reverse the direction of all the elements that are larger than k

add the new permutation to the list

Here is an application of this algorithm for n = 3, with the largest mobile
element shown in bold:

1
←

2
←

3
←

1
←

3
←

2
←

3
←

1
←

2
←

3
→

2
←

1
←

2
←

3
→

1
←

2
←

1
←

3
→
.

This algorithm is one of the most efficient for generating permutations; it can
be implemented to run in time proportional to the number of permutations, i.e.,
in �(n!). Of course, it is horribly slow for all but very small values of n; however,
this is not the algorithm’s “fault” but rather the fault of the problem: it simply asks
to generate too many items.

One can argue that the permutation ordering generated by the Johnson-
Trotter algorithm is not quite natural; for example, the natural place for permu-
tation n(n − 1) . . . 1 seems to be the last one on the list. This would be the case
if permutations were listed in increasing order—also called the lexicographic or-
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der—which is the order in which they would be listed in a dictionary if the numbers
were interpreted as letters of an alphabet. For example, for n = 3,

123 132 213 231 312 321.

So how can we generate the permutation following a1a2 . . . an−1an in lexi-
cographic order? If an−1 < an, which is the case for exactly one half of all the
permutations, we can simply transpose these last two elements. For example, 123
is followed by 132. If an−1 > an, we find the permutation’s longest decreasing suffix
ai+1 > ai+2 > . . . > an (but ai < ai+1); increase ai by exchanging it with the smallest
element of the suffix that is greater than ai; and reverse the new suffix to put it in
increasing order. For example, 362541 is followed by 364125. Here is pseudocode
of this simple algorithm whose origins go as far back as 14th-century India.

ALGORITHM LexicographicPermute(n)

//Generates permutations in lexicographic order
//Input: A positive integer n

//Output: A list of all permutations of {1, . . . , n} in lexicographic order
initialize the first permutation with 12 . . . n

while last permutation has two consecutive elements in increasing order do
let i be its largest index such that ai < ai+1 //ai+1 > ai+2 > . . . > an

find the largest index j such that ai < aj //j ≥ i + 1 since ai < ai+1
swap ai with aj //ai+1ai+2 . . . an will remain in decreasing order
reverse the order of the elements from ai+1 to an inclusive
add the new permutation to the list

Generating Subsets

Recall that in Section 3.4 we examined the knapsack problem, which asks to find
the most valuable subset of items that fits a knapsack of a given capacity. The
exhaustive-search approach to solving this problem discussed there was based on
generating all subsets of a given set of items. In this section, we discuss algorithms
for generating all 2n subsets of an abstract set A = {a1, . . . , an}. (Mathematicians
call the set of all subsets of a set its power set.)

The decrease-by-one idea is immediately applicable to this problem, too. All
subsets of A = {a1, . . . , an} can be divided into two groups: those that do not
contain an and those that do. The former group is nothing but all the subsets of
{a1, . . . , an−1}, while each and every element of the latter can be obtained by
adding an to a subset of {a1, . . . , an−1}. Thus, once we have a list of all subsets of
{a1, . . . , an−1}, we can get all the subsets of {a1, . . . , an} by adding to the list all
its elements with an put into each of them. An application of this algorithm to
generate all subsets of {a1, a2, a3} is illustrated in Figure 4.10.

Similarly to generating permutations, we do not have to generate power sets of
smaller sets. A convenient way of solving the problem directly is based on a one-to-
one correspondence between all 2n subsets of an n element set A = {a1, . . . , an}
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n subsets

0 ∅

1 ∅ {a1}
2 ∅ {a1} {a2} {a1, a2}
3 ∅ {a1} {a2} {a1, a2} {a3} {a1, a3} {a2, a3} {a1, a2, a3}

FIGURE 4.10 Generating subsets bottom up.

and all 2n bit strings b1, . . . , bn of length n. The easiest way to establish such a
correspondence is to assign to a subset the bit string in which bi = 1 if ai belongs
to the subset and bi = 0 if ai does not belong to it. (We mentioned this idea of bit
vectors in Section 1.4.) For example, the bit string 000 will correspond to the empty
subset of a three-element set, 111 will correspond to the set itself, i.e., {a1, a2, a3},
and 110 will represent {a1, a2}. With this correspondence in place, we can generate
all the bit strings of length n by generating successive binary numbers from 0 to
2n − 1, padded, when necessary, with an appropriate number of leading 0’s. For
example, for the case of n = 3, we obtain

bit strings 000 001 010 011 100 101 110 111
subsets ∅ {a3} {a2} {a2, a3} {a1} {a1, a3} {a1, a2} {a1, a2, a3}
Note that although the bit strings are generated by this algorithm in lexico-

graphic order (in the two-symbol alphabet of 0 and 1), the order of the subsets
looks anything but natural. For example, we might want to have the so-called
squashed order, in which any subset involving aj can be listed only after all the
subsets involving a1, . . . , aj−1, as was the case for the list of the three-element set
in Figure 4.10. It is easy to adjust the bit string–based algorithm above to yield a
squashed ordering of the subsets involved (see Problem 6 in this section’s exer-
cises).

A more challenging question is whether there exists a minimal-change algo-
rithm for generating bit strings so that every one of them differs from its immediate
predecessor by only a single bit. (In the language of subsets, we want every subset
to differ from its immediate predecessor by either an addition or a deletion, but
not both, of a single element.) The answer to this question is yes. For example, for
n = 3, we can get

000 001 011 010 110 111 101 100.

Such a sequence of bit strings is called the binary reflected Gray code. Frank Gray,
a researcher at AT&T Bell Laboratories, reinvented it in the 1940s to minimize
the effect of errors in transmitting digital signals (see, e.g., [Ros07], pp. 642–
643). Seventy years earlier, the French engineer Émile Baudot used such codes
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in telegraphy. Here is pseudocode that generates the binary reflected Gray code
recursively.

ALGORITHM BRGC(n)

//Generates recursively the binary reflected Gray code of order n

//Input: A positive integer n

//Output: A list of all bit strings of length n composing the Gray code
if n = 1 make list L containing bit strings 0 and 1 in this order
else generate list L1 of bit strings of size n − 1 by calling BRGC(n − 1)

copy list L1 to list L2 in reversed order
add 0 in front of each bit string in list L1
add 1 in front of each bit string in list L2
append L2 to L1 to get list L

return L

The correctness of the algorithm stems from the fact that it generates 2n bit
strings and all of them are distinct. Both these assertions are easy to check by
mathematical induction. Note that the binary reflected Gray code is cyclic: its last
bit string differs from the first one by a single bit. For a nonrecursive algorithm for
generating the binary reflected Gray code see Problem 9 in this section’s exercises.

Exercises 4.3

1. Is it realistic to implement an algorithm that requires generating all permu-
tations of a 25-element set on your computer? What about all the subsets of
such a set?

2. Generate all permutations of {1, 2, 3, 4} by
a. the bottom-up minimal-change algorithm.

b. the Johnson-Trotter algorithm.

c. the lexicographic-order algorithm.

3. Apply LexicographicPermute to multiset {1, 2, 2, 3}. Does it generate correctly
all the permutations in lexicographic order?

4. Consider the following implementation of the algorithm for generating per-
mutations discovered by B. Heap [Hea63].

ALGORITHM HeapPermute(n)

//Implements Heap’s algorithm for generating permutations
//Input: A positive integer n and a global array A[1..n]
//Output: All permutations of elements of A

if n = 1
write A
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else
for i ← 1 to n do

HeapPermute(n − 1)
if n is odd

swap A[1] and A[n]
else swap A[i] and A[n]

a. Trace the algorithm by hand for n = 2, 3, and 4.

b. Prove the correctness of Heap’s algorithm.

c. What is the time efficiency of HeapPermute?

5. Generate all the subsets of a four-element set A = {a1, a2, a3, a4} by each of
the two algorithms outlined in this section.

6. What simple trick would make the bit string–based algorithm generate subsets
in squashed order?

7. Write pseudocode for a recursive algorithm for generating all 2n bit strings of
length n.

8. Write a nonrecursive algorithm for generating 2n bit strings of length n that
implements bit strings as arrays and does not use binary additions.

9. a. Generate the binary reflexive Gray code of order 4.

b. Trace the following nonrecursive algorithm to generate the binary re-
flexive Gray code of order 4. Start with the n-bit string of all 0’s. For
i = 1, 2, . . . , 2n−1, generate the ith bit string by flipping bit b in the previ-
ous bit string, where b is the position of the least significant 1 in the binary
representation of i.

10. Design a decrease-and-conquer algorithm for generating all combinations of
k items chosen from n, i.e., all k-element subsets of a given n-element set. Is
your algorithm a minimal-change algorithm?

11. Gray code and the Tower of Hanoi
a. Show that the disk moves made in the classic recursive algorithm for the

Tower of Hanoi puzzle can be used for generating the binary reflected Gray
code.

b. Show how the binary reflected Gray code can be used for solving the Tower
of Hanoi puzzle.

12. Fair attraction In olden days, one could encounter the following attraction
at a fair. A light bulb was connected to several switches in such a way that it
lighted up only when all the switches were closed. Each switch was controlled
by a push button; pressing the button toggled the switch, but there was no
way to know the state of the switch. The object was to turn the light bulb on.
Design an algorithm to turn on the light bulb with the minimum number of
button pushes needed in the worst case for n switches.
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4.4 Decrease-by-a-Constant-Factor Algorithms

You may recall from the introduction to this chapter that decrease-by-a-constant-
factor is the second major variety of decrease-and-conquer. As an example of an
algorithm based on this technique, we mentioned there exponentiation by squar-
ing defined by formula (4.2). In this section, you will find a few other examples of
such algorithms.. The most important and well-known of them is binary search.
Decrease-by-a-constant-factor algorithms usually run in logarithmic time, and, be-
ing very efficient, do not happen often; a reduction by a factor other than two is
especially rare.

Binary Search

Binary search is a remarkably efficient algorithm for searching in a sorted array. It
works by comparing a search key K with the array’s middle element A[m]. If they
match, the algorithm stops; otherwise, the same operation is repeated recursively
for the first half of the array if K < A[m], and for the second half if K > A[m]:

K

�
A[0] . . . A[m − 1]︸ ︷︷ ︸

search here if
K<A[m]

A[m] A[m + 1] . . . A[n − 1]︸ ︷︷ ︸
search here if

K>A[m]

.

As an example, let us apply binary search to searching for K = 70 in the array

3 14 27 31 39 42 55 70 74 81 85 93 98

The iterations of the algorithm are given in the following table:

3 14 27 31 39 42 55 70 74 81 85 93 98
0 1 2 3 4 5 6 7 8 9 10 11 12index

value

iteration 1

iteration 2

iteration 3

l m r

l m r

l,m r

Though binary search is clearly based on a recursive idea, it can be easily
implemented as a nonrecursive algorithm, too. Here is pseudocode of this nonre-
cursive version.
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ALGORITHM BinarySearch(A[0..n − 1], K)

//Implements nonrecursive binary search
//Input: An array A[0..n − 1] sorted in ascending order and
// a search key K

//Output: An index of the array’s element that is equal to K

// or −1 if there is no such element
l ← 0; r ← n − 1
while l ≤ r do

m ← �(l + r)/2�
if K = A[m] return m

else if K < A[m] r ← m − 1
else l ← m + 1

return −1

The standard way to analyze the efficiency of binary search is to count the number
of times the search key is compared with an element of the array. Moreover, for
the sake of simplicity, we will count the so-called three-way comparisons. This
assumes that after one comparison of K with A[m], the algorithm can determine
whether K is smaller, equal to, or larger than A[m].

How many such comparisons does the algorithm make on an array of n

elements? The answer obviously depends not only on n but also on the specifics of
a particular instance of the problem. Let us find the number of key comparisons
in the worst case Cworst(n). The worst-case inputs include all arrays that do not
contain a given search key, as well as some successful searches. Since after one
comparison the algorithm faces the same situation but for an array half the size,
we get the following recurrence relation for Cworst(n):

Cworst(n) = Cworst(�n/2�) + 1 for n > 1, Cworst(1) = 1. (4.3)

(Stop and convince yourself that n/2 must be, indeed, rounded down and that the
initial condition must be written as specified.)

We already encountered recurrence (4.3), with a different initial condition, in
Section 2.4 (see recurrence (2.4) and its solution there for n = 2k). For the initial
condition Cworst(1) = 1, we obtain

Cworst(2
k) = k + 1 = log2 n + 1. (4.4)

Further, similarly to the case of recurrence (2.4) (Problem 7 in Exercises 2.4), the
solution given by formula (4.4) for n = 2k can be tweaked to get a solution valid
for an arbitrary positive integer n:

Cworst(n) = �log2 n� + 1 = �log2(n + 1)�. (4.5)

Formula (4.5) deserves attention. First, it implies that the worst-case time
efficiency of binary search is in �(log n). Second, it is the answer we should have
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fully expected: since the algorithm simply reduces the size of the remaining array
by about half on each iteration, the number of such iterations needed to reduce the
initial size n to the final size 1 has to be about log2 n. Third, to reiterate the point
made in Section 2.1, the logarithmic function grows so slowly that its values remain
small even for very large values of n. In particular, according to formula (4.5),
it will take no more than �log2(103 + 1)� = 10 three-way comparisons to find an
element of a given value (or establish that there is no such element) in any sorted
array of one thousand elements, and it will take no more than �log2(106 + 1)� = 20
comparisons to do it for any sorted array of size one million!

What can we say about the average-case efficiency of binary search? A so-
phisticated analysis shows that the average number of key comparisons made by
binary search is only slightly smaller than that in the worst case:

Cavg(n) ≈ log2 n.

(More accurate formulas for the average number of comparisons in a successful
and an unsuccessful search are Cyes

avg
(n) ≈ log2 n − 1 and Cno

avg
(n) ≈ log2(n + 1),

respectively.)
Though binary search is an optimal searching algorithm if we restrict our op-

erations only to comparisons between keys (see Section 11.2), there are searching
algorithms (see interpolation search in Section 4.5 and hashing in Section 7.3) with
a better average-case time efficiency, and one of them (hashing) does not even re-
quire the array to be sorted! These algorithms do require some special calculations
in addition to key comparisons, however. Finally, the idea behind binary search
has several applications beyond searching (see, e.g., [Ben00]). In addition, it can be
applied to solving nonlinear equations in one unknown; we discuss this continuous
analogue of binary search, called the method of bisection, in Section 12.4.

Fake-Coin Problem

Of several versions of the fake-coin identification problem, we consider here
the one that best illustrates the decrease-by-a-constant-factor strategy. Among n

identical-looking coins, one is fake. With a balance scale, we can compare any two
sets of coins. That is, by tipping to the left, to the right, or staying even, the balance
scale will tell whether the sets weigh the same or which of the sets is heavier than
the other but not by how much. The problem is to design an efficient algorithm
for detecting the fake coin. An easier version of the problem—the one we discuss
here—assumes that the fake coin is known to be, say, lighter than the genuine
one.1

The most natural idea for solving this problem is to divide n coins into two
piles of �n/2� coins each, leaving one extra coin aside if n is odd, and put the two

1. A much more challenging version assumes no additional information about the relative weights of the
fake and genuine coins or even the presence of the fake coin among n given coins. We pursue this more
difficult version in the exercises for Section 11.2.
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piles on the scale. If the piles weigh the same, the coin put aside must be fake;
otherwise, we can proceed in the same manner with the lighter pile, which must
be the one with the fake coin.

We can easily set up a recurrence relation for the number of weighings W(n)

needed by this algorithm in the worst case:

W(n) = W(�n/2�) + 1 for n > 1, W(1) = 0.

This recurrence should look familiar to you. Indeed, it is almost identical to the one
for the worst-case number of comparisons in binary search. (The difference is in
the initial condition.) This similarity is not really surprising, since both algorithms
are based on the same technique of halving an instance size. The solution to the
recurrence for the number of weighings is also very similar to the one we had for
binary search: W(n) = �log2 n�.

This stuff should look elementary by now, if not outright boring. But wait: the
interesting point here is the fact that the above algorithm is not the most efficient
solution. It would be more efficient to divide the coins not into two but into three
piles of about n/3 coins each. (Details of a precise formulation are developed
in this section’s exercises. Do not miss it! If your instructor forgets, demand the
instructor to assign Problem 10.) After weighing two of the piles, we can reduce
the instance size by a factor of three. Accordingly, we should expect the number
of weighings to be about log3 n, which is smaller than log2 n.

Russian Peasant Multiplication

Now we consider a nonorthodox algorithm for multiplying two positive integers
called multiplication à la russe or the Russian peasant method . Let n and m

be positive integers whose product we want to compute, and let us measure the
instance size by the value of n. Now, if n is even, an instance of half the size has
to deal with n/2, and we have an obvious formula relating the solution to the
problem’s larger instance to the solution to the smaller one:

n . m = n

2
. 2m.

If n is odd, we need only a slight adjustment of this formula:

n . m = n − 1
2

. 2m + m.

Using these formulas and the trivial case of 1 . m = m to stop, we can compute
product n . m either recursively or iteratively. An example of computing 50 . 65
with this algorithm is given in Figure 4.11. Note that all the extra addends shown
in parentheses in Figure 4.11a are in the rows that have odd values in the first
column. Therefore, we can find the product by simply adding all the elements in
the m column that have an odd number in the n column (Figure 4.11b).

Also note that the algorithm involves just the simple operations of halving,
doubling, and adding—a feature that might be attractive, for example, to those
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n m n m

50 65 50 65
25 130 25 130 130
12 260 (+130) 12 260

6 520 6 520
3 1040 3 1040 1040
1 2080 (+1040) 1 2080 2080

2080 +(130 + 1040) = 3250 3250

(a) (b)

FIGURE 4.11 Computing 50 . 65 by the Russian peasant method.

who do not want to memorize the table of multiplications. It is this feature of the
algorithm that most probably made it attractive to Russian peasants who, accord-
ing to Western visitors, used it widely in the nineteenth century and for whom the
method is named. (In fact, the method was known to Egyptian mathematicians as
early as 1650 b.c. [Cha98, p. 16].) It also leads to very fast hardware implementa-
tion since doubling and halving of binary numbers can be performed using shifts,
which are among the most basic operations at the machine level.

Josephus Problem

Our last example is the Josephus problem, named for Flavius Josephus, a famous
Jewish historian who participated in and chronicled the Jewish revolt of 66–70
c.e. against the Romans. Josephus, as a general, managed to hold the fortress of
Jotapata for 47 days, but after the fall of the city he took refuge with 40 diehards in
a nearby cave. There, the rebels voted to perish rather than surrender. Josephus
proposed that each man in turn should dispatch his neighbor, the order to be
determined by casting lots. Josephus contrived to draw the last lot, and, as one
of the two surviving men in the cave, he prevailed upon his intended victim to
surrender to the Romans.

So let n people numbered 1 to n stand in a circle. Starting the grim count with
person number 1, we eliminate every second person until only one survivor is left.
The problem is to determine the survivor’s number J (n). For example (Figure
4.12), if n is 6, people in positions 2, 4, and 6 will be eliminated on the first pass
through the circle, and people in initial positions 3 and 1 will be eliminated on the
second pass, leaving a sole survivor in initial position 5—thus, J (6) = 5. To give
another example, if n is 7, people in positions 2, 4, 6, and 1 will be eliminated on
the first pass (it is more convenient to include 1 in the first pass) and people in
positions 5 and, for convenience, 3 on the second—thus, J (7) = 7.
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(a) (b)

41

325

2161

11

3261

217

4152

FIGURE 4.12 Instances of the Josephus problem for (a) n = 6 and (b) n = 7. Subscript
numbers indicate the pass on which the person in that position is
eliminated. The solutions are J (6) = 5 and J (7) = 7, respectively.

It is convenient to consider the cases of even and odd n’s separately. If n is
even, i.e., n = 2k, the first pass through the circle yields an instance of exactly the
same problem but half its initial size. The only difference is in position numbering;
for example, a person in initial position 3 will be in position 2 for the second pass,
a person in initial position 5 will be in position 3, and so on (check Figure 4.12a). It
is easy to see that to get the initial position of a person, we simply need to multiply
his new position by 2 and subtract 1. This relationship will hold, in particular, for
the survivor, i.e.,

J (2k) = 2J (k) − 1.

Let us now consider the case of an odd n (n > 1), i.e., n = 2k + 1. The first pass
eliminates people in all even positions. If we add to this the elimination of the
person in position 1 right after that, we are left with an instance of size k. Here, to
get the initial position that corresponds to the new position numbering, we have
to multiply the new position number by 2 and add 1 (check Figure 4.12b). Thus,
for odd values of n, we get

J (2k + 1) = 2J (k) + 1.

Can we get a closed-form solution to the two-case recurrence subject to the
initial condition J (1) = 1? The answer is yes, though getting it requires more
ingenuity than just applying backward substitutions. In fact, one way to find a
solution is to apply forward substitutions to get, say, the first 15 values of J (n),
discern a pattern, and then prove its general validity by mathematical induction.
We leave the execution of this plan to the exercises; alternatively, you can look it
up in [GKP94], whose exposition of the Josephus problem we have been following.
Interestingly, the most elegant form of the closed-form answer involves the binary
representation of size n: J (n) can be obtained by a 1-bit cyclic shift left of n itself!
For example, J (6) = J (1102) = 1012 = 5 and J (7) = J (1112) = 1112 = 7.
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Exercises 4.4

1. Cutting a stick A stick n inches long needs to be cut into n 1-inch pieces.
Outline an algorithm that performs this task with the minimum number of
cuts if several pieces of the stick can be cut at the same time. Also give a
formula for the minimum number of cuts.

2. Design a decrease-by-half algorithm for computing �log2 n� and determine its
time efficiency.

3. a. What is the largest number of key comparisons made by binary search in
searching for a key in the following array?

3    14    27   31   39    42   55    70   74    81   85   93    98

b. List all the keys of this array that will require the largest number of key
comparisons when searched for by binary search.

c. Find the average number of key comparisons made by binary search in a
successful search in this array. Assume that each key is searched for with
the same probability.

d. Find the average number of key comparisons made by binary search in an
unsuccessful search in this array. Assume that searches for keys in each of
the 14 intervals formed by the array’s elements are equally likely.

4. Estimate how many times faster an average successful search will be in a
sorted array of one million elements if it is done by binary search versus
sequential search.

5. The time efficiency of sequential search does not depend on whether a list is
implemented as an array or as a linked list. Is it also true for searching a sorted
list by binary search?

6. a. Design a version of binary search that uses only two-way comparisons such
as ≤ and =. Implement your algorithm in the language of your choice and
carefully debug it: such programs are notorious for being prone to bugs.

b. Analyze the time efficiency of the two-way comparison version designed
in part a.

7. Picture guessing A version of the popular problem-solving task involves pre-
senting people with an array of 42 pictures—seven rows of six pictures each—
and asking them to identify the target picture by asking questions that can be
answered yes or no. Further, people are then required to identify the picture
with as few questions as possible. Suggest the most efficient algorithm for this
problem and indicate the largest number of questions that may be necessary.

8. Consider ternary search—the following algorithm for searching in a sorted
array A[0..n − 1]. If n = 1, simply compare the search key K with the single
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element of the array; otherwise, search recursively by comparing K with
A[�n/3�], and if K is larger, compare it with A[�2n/3�] to determine in which
third of the array to continue the search.
a. What design technique is this algorithm based on?

b. Set up a recurrence for the number of key comparisons in the worst case.
You may assume that n = 3k.

c. Solve the recurrence for n = 3k.

d. Compare this algorithm’s efficiency with that of binary search.

9. An array A[0..n − 2] contains n − 1 integers from 1 to n in increasing order.
(Thus one integer in this range is missing.) Design the most efficient algorithm
you can to find the missing integer and indicate its time efficiency.

10. a. Write pseudocode for the divide-into-three algorithm for the fake-coin
problem. Make sure that your algorithm handles properly all values of n,
not only those that are multiples of 3.

b. Set up a recurrence relation for the number of weighings in the divide-into-
three algorithm for the fake-coin problem and solve it for n = 3k.

c. For large values of n, about how many times faster is this algorithm than
the one based on dividing coins into two piles? Your answer should not
depend on n.

11. a. Apply the Russian peasant algorithm to compute 26 . 47.

b. From the standpoint of time efficiency, does it matter whether we multiply
n by m or m by n by the Russian peasant algorithm?

12. a. Write pseudocode for the Russian peasant multiplication algorithm.

b. What is the time efficiency class of Russian peasant multiplication?

13. Find J (40)—the solution to the Josephus problem for n = 40.

14. Prove that the solution to the Josephus problem is 1 for every n that is a power
of 2.

15. For the Josephus problem,
a. compute J (n) for n = 1, 2, . . . , 15.

b. discern a pattern in the solutions for the first fifteen values of n and prove
its general validity.

c. prove the validity of getting J (n) by a 1-bit cyclic shift left of the binary
representation of n.

4.5 Variable-Size-Decrease Algorithms

In the third principal variety of decrease-and-conquer, the size reduction pattern
varies from one iteration of the algorithm to another. Euclid’s algorithm for
computing the greatest common divisor (Section 1.1) provides a good example
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of this kind of algorithm. In this section, we encounter a few more examples of
this variety.

Computing a Median and the Selection Problem

The selection problem is the problem of finding the kth smallest element in a list
of n numbers. This number is called the kth order statistic. Of course, for k = 1 or
k = n, we can simply scan the list in question to find the smallest or largest element,
respectively. A more interesting case of this problem is for k = �n/2�, which asks to
find an element that is not larger than one half of the list’s elements and not smaller
than the other half. This middle value is called the median, and it is one of the
most important notions in mathematical statistics. Obviously, we can find the kth
smallest element in a list by sorting the list first and then selecting the kth element
in the output of a sorting algorithm. The time of such an algorithm is determined
by the efficiency of the sorting algorithm used. Thus, with a fast sorting algorithm
such as mergesort (discussed in the next chapter), the algorithm’s efficiency is in
O(n log n).

You should immediately suspect, however, that sorting the entire list is most
likely overkill since the problem asks not to order the entire list but just to find its
kth smallest element. Indeed, we can take advantage of the idea of partitioning
a given list around some value p of, say, its first element. In general, this is a
rearrangement of the list’s elements so that the left part contains all the elements
smaller than or equal to p, followed by the pivot p itself, followed by all the
elements greater than or equal to p.

all are ≤ p all are ≥ ppp

Of the two principal algorithmic alternatives to partition an array, here we
discuss the Lomuto partitioning [Ben00, p. 117]; we introduce the better known
Hoare’s algorithm in the next chapter. To get the idea behind the Lomuto parti-
tioning, it is helpful to think of an array—or, more generally, a subarray A[l..r]
(0 ≤ l ≤ r ≤ n − 1)—under consideration as composed of three contiguous seg-
ments. Listed in the order they follow pivot p, they are as follows: a segment with
elements known to be smaller than p, the segment of elements known to be greater
than or equal to p, and the segment of elements yet to be compared to p (see Fig-
ure 4.13a). Note that the segments can be empty; for example, it is always the case
for the first two segments before the algorithm starts.

Starting with i = l + 1, the algorithm scans the subarray A[l..r] left to right,
maintaining this structure until a partition is achieved. On each iteration, it com-
pares the first element in the unknown segment (pointed to by the scanning index
i in Figure 4.13a) with the pivot p. If A[i] ≥ p, i is simply incremented to expand
the segment of the elements greater than or equal to p while shrinking the un-
processed segment. If A[i] < p, it is the segment of the elements smaller than p

that needs to be expanded. This is done by incrementing s, the index of the last
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(a)

(c)

l s ri

p < p ≥ p ?

(b)

l s r

p < p ≥ p

l s r

p< p ≥ p

FIGURE 4.13 Illustration of the Lomuto partitioning.

element in the first segment, swapping A[i] and A[s], and then incrementing i to
point to the new first element of the shrunk unprocessed segment. After no un-
processed elements remain (Figure 4.13b), the algorithm swaps the pivot with A[s]
to achieve a partition being sought (Figure 4.13c).

Here is pseudocode implementing this partitioning procedure.

ALGORITHM LomutoPartition(A[l..r])

//Partitions subarray by Lomuto’s algorithm using first element as pivot
//Input: A subarray A[l..r] of array A[0..n − 1], defined by its left and right
// indices l and r (l ≤ r)

//Output: Partition of A[l..r] and the new position of the pivot
p ← A[l]
s ← l

for i ← l + 1 to r do
if A[i] < p

s ← s + 1; swap(A[s], A[i])
swap(A[l], A[s])
return s

How can we take advantage of a list partition to find the kth smallest element
in it? Let us assume that the list is implemented as an array whose elements
are indexed starting with a 0, and let s be the partition’s split position, i.e., the
index of the array’s element occupied by the pivot after partitioning. If s = k − 1,
pivot p itself is obviously the kth smallest element, which solves the problem. If
s > k − 1, the kth smallest element in the entire array can be found as the kth
smallest element in the left part of the partitioned array. And if s < k − 1, it can
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be found as the (k − s)th smallest element in its right part. Thus, if we do not solve
the problem outright, we reduce its instance to a smaller one, which can be solved
by the same approach, i.e., recursively. This algorithm is called quickselect.

To find the kth smallest element in array A[0..n − 1] by this algorithm, call
Quickselect(A[0..n − 1], k) where

ALGORITHM Quickselect(A[l..r], k)

//Solves the selection problem by recursive partition-based algorithm
//Input: Subarray A[l..r] of array A[0..n − 1] of orderable elements and
// integer k (1 ≤ k ≤ r − l + 1)
//Output: The value of the kth smallest element in A[l..r]
s ← LomutoPartition(A[l..r]) //or another partition algorithm
if s = k − 1 return A[s]
else if s > l + k − 1 Quickselect(A[l..s − 1], k)

else Quickselect(A[s + 1..r], k − 1 − s)

In fact, the same idea can be implemented without recursion as well. For the
nonrecursive version, we need not even adjust the value of k but just continue
until s = k − 1.

EXAMPLE Apply the partition-based algorithm to find the median of the fol-
lowing list of nine numbers: 4, 1, 10, 8, 7, 12, 9, 2, 15. Here, k = �9/2� = 5 and our
task is to find the 5th smallest element in the array.

We use the above version of array partitioning, showing the pivots in bold.

0 1 2 3 4 5 6 7 8

s i

4 1 10 8 7 12 9 2 15
s i

4 1 10 8 7 12 9 2 15
s i

4 1 10 8 7 12 9 2 15
s i

4 1 2 8 7 12 9 10 15
s i

4 1 2 8 7 12 9 10 15
2 1 4 8 7 12 9 10 15

Since s = 2 is smaller than k − 1 = 4, we proceed with the right part of the array:
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0 1 2 3 4 5 6 7 8

s i

8 7 12 9 10 15
s i

8 7 12 9 10 15
s i

8 7 12 9 10 15
7 8 12 9 10 15

Now s = k − 1 = 4, and hence we can stop: the found median is 8, which is greater
than 2, 1, 4, and 7 but smaller than 12, 9, 10, and 15.

How efficient is quickselect? Partitioning an n-element array always requires
n − 1 key comparisons. If it produces the split that solves the selection problem
without requiring more iterations, then for this best case we obtain Cbest(n) =
n − 1 ∈ �(n). Unfortunately, the algorithm can produce an extremely unbalanced
partition of a given array, with one part being empty and the other containing n − 1
elements. In the worst case, this can happen on each of the n − 1 iterations. (For
a specific example of the worst-case input, consider, say, the case of k = n and a
strictly increasing array.) This implies that

Cworst(n) = (n − 1) + (n − 2) + . . . + 1 = (n − 1)n/2 ∈ �(n2),

which compares poorly with the straightforward sorting-based approach men-
tioned in the beginning of our selection problem discussion. Thus, the usefulness of
the partition-based algorithm depends on the algorithm’s efficiency in the average
case. Fortunately, a careful mathematical analysis has shown that the average-case
efficiency is linear. In fact, computer scientists have discovered a more sophisti-
cated way of choosing a pivot in quickselect that guarantees linear time even in
the worst case [Blo73], but it is too complicated to be recommended for practical
applications.

It is also worth noting that the partition-based algorithm solves a somewhat
more general problem of identifying the k smallest and n − k largest elements of
a given list, not just the value of its kth smallest element.

Interpolation Search

As the next example of a variable-size-decrease algorithm, we consider an algo-
rithm for searching in a sorted array called interpolation search. Unlike binary
search, which always compares a search key with the middle value of a given sorted
array (and hence reduces the problem’s instance size by half), interpolation search
takes into account the value of the search key in order to find the array’s element
to be compared with the search key. In a sense, the algorithm mimics the way we
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value

v

A[r ]

A[l ]

l x r index

FIGURE 4.14 Index computation in interpolation search.

search for a name in a telephone book: if we are searching for someone named
Brown, we open the book not in the middle but very close to the beginning, unlike
our action when searching for someone named, say, Smith.

More precisely, on the iteration dealing with the array’s portion between the
leftmost element A[l] and the rightmost element A[r], the algorithm assumes
that the array values increase linearly, i.e., along the straight line through the
points (l, A[l]) and (r, A[r]). (The accuracy of this assumption can influence the
algorithm’s efficiency but not its correctness.) Accordingly, the search key’s value
v is compared with the element whose index is computed as (the round-off of)
the x coordinate of the point on the straight line through the points (l, A[l]) and
(r, A[r]) whose y coordinate is equal to the search value v (Figure 4.14).

Writing down a standard equation for the straight line passing through the
points (l, A[l]) and (r, A[r]), substituting v for y, and solving it for x leads to the
following formula:

x = l +
⌊

(v − A[l])(r − l)

A[r] − A[l]

⌋
. (4.6)

The logic behind this approach is quite straightforward. We know that the
array values are increasing (more accurately, not decreasing) from A[l] to A[r],
but we do not know how they do it. Had these values increased linearly, which is
the simplest manner possible, the index computed by formula (4.4) would be the
expected location of the array’s element with the value equal to v. Of course, if v

is not between A[l] and A[r], formula (4.4) need not be applied (why?).
After comparing v with A[x], the algorithm either stops (if they are equal)

or proceeds by searching in the same manner among the elements indexed either
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between l and x − 1 or between x + 1 and r , depending on whether A[x] is smaller
or larger than v. Thus, the size of the problem’s instance is reduced, but we cannot
tell a priori by how much.

The analysis of the algorithm’s efficiency shows that interpolation search uses
fewer than log2 log2 n + 1 key comparisons on the average when searching in a list
of n random keys. This function grows so slowly that the number of comparisons
is a very small constant for all practically feasible inputs (see Problem 6 in this
section’s exercises). But in the worst case, interpolation search is only linear, which
must be considered a bad performance (why?).

Assessing the worthiness of interpolation search versus that of binary search,
Robert Sedgewick wrote in the second edition of his Algorithms that binary search
is probably better for smaller files but interpolation search is worth considering
for large files and for applications where comparisons are particularly expensive
or access costs are very high. Note that in Section 12.4 we discuss a continuous
counterpart of interpolation search, which can be seen as one more example of a
variable-size-decrease algorithm.

Searching and Insertion in a Binary Search Tree

Let us revisit the binary search tree. Recall that this is a binary tree whose nodes
contain elements of a set of orderable items, one element per node, so that for
every node all elements in the left subtree are smaller and all the elements in the
right subtree are greater than the element in the subtree’s root. When we need to
search for an element of a given value v in such a tree, we do it recursively in the
following manner. If the tree is empty, the search ends in failure. If the tree is not
empty, we compare v with the tree’s root K(r). If they match, a desired element
is found and the search can be stopped; if they do not match, we continue with
the search in the left subtree of the root if v < K(r) and in the right subtree if
v > K(r). Thus, on each iteration of the algorithm, the problem of searching in a
binary search tree is reduced to searching in a smaller binary search tree. The most
sensible measure of the size of a search tree is its height; obviously, the decrease in
a tree’s height normally changes from one iteration to another of the binary tree
search—thus giving us an excellent example of a variable-size-decrease algorithm.

In the worst case of the binary tree search, the tree is severely skewed.
This happens, in particular, if a tree is constructed by successive insertions of an
increasing or decreasing sequence of keys (Figure 4.15).

Obviously, the search for an−1 in such a tree requires n comparisons, making
the worst-case efficiency of the search operation fall into �(n). Fortunately, the
average-case efficiency turns out to be in �(log n). More precisely, the number of
key comparisons needed for a search in a binary search tree built from n random
keys is about 2ln n ≈ 1.39 log2 n. Since insertion of a new key into a binary search
tree is almost identical to that of searching there, it also exemplifies the variable-
size-decrease technique and has the same efficiency characteristics as the search
operation.
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a0 a0

a1 a1

an–2 an–2

an–1 an–1

(a) (b)

. . . . . .

FIGURE 4.15 Binary search trees for (a) an increasing sequence of keys and (b) a
decreasing sequence of keys.

The Game of Nim

There are several well-known games that share the following features. There are
two players, who move in turn. No randomness or hidden information is permitted:
all players know all information about gameplay. A game is impartial: each player
has the same moves available from the same game position. Each of a finite
number of available moves leads to a smaller instance of the same game. The
game ends with a win by one of the players (there are no ties). The winner is the
last player who is able to move.

A prototypical example of such games is Nim. Generally, the game is played
with several piles of chips, but we consider the one-pile version first. Thus, there is
a single pile of n chips. Two players take turns by removing from the pile at least
one and at most m chips; the number of chips taken may vary from one move to
another, but both the lower and upper limits stay the same. Who wins the game
by taking the last chip, the player moving first or second, if both players make the
best moves possible?

Let us call an instance of the game a winning position for the player to
move next if that player has a winning strategy, i.e., a sequence of moves that
results in a victory no matter what moves the opponent makes. Let us call an
instance of the game a losing position for the player to move next if every move
available for that player leads to a winning position for the opponent. The standard
approach to determining which positions are winning and which are losing is to
investigate small values of n first. It is logical to consider the instance of n = 0 as
a losing one for the player to move next because this player is the first one who
cannot make a move. Any instance with 1 ≤ n ≤ m chips is obviously a winning
position for the player to move next (why?). The instance with n = m + 1 chips
is a losing one because taking any allowed number of chips puts the opponent in
a winning position. (See an illustration for m = 4 in Figure 4.16.) Any instance
with m + 2 ≤ n ≤ 2m + 1 chips is a winning position for the player to move next
because there is a move that leaves the opponent with m + 1chips, which is a losing
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FIGURE 4.16 Illustration of one-pile Nim with the maximum number of chips that may
be taken on each move m = 4. The numbers indicate n, the number of
chips in the pile. The losing positions for the player to move are circled.
Only winning moves from the winning positions are shown (in bold).

position. 2m + 2 = 2(m + 1) chips is the next losing position, and so on. It is not
difficult to see the pattern that can be formally proved by mathematical induction:
an instance with n chips is a winning position for the player to move next if and only
if n is not a multiple of m + 1. The winning strategy is to take n mod(m + 1) chips
on every move; any deviation from this strategy puts the opponent in a winning
position.

One-pile Nim has been known for a very long time. It appeared, in particular,
as the summation game in the first published book on recreational mathematics,
authored by Claude-Gaspar Bachet, a French aristocrat and mathematician, in
1612: a player picks a positive integer less than, say, 10, and then his opponent and
he take turns adding any integer less than 10; the first player to reach 100 exactly
is the winner [Dud70].

In general, Nim is played with I > 1 piles of chips of sizes n1, n2, . . . , nI . On
each move, a player can take any available number of chips, including all of them,
from any single pile. The goal is the same—to be the last player able to make a
move. Note that for I = 2, it is easy to figure out who wins this game and how.
Here is a hint: the answer for the game’s instances with n1 = n2 differs from the
answer for those with n1 �= n2.

A solution to the general case of Nim is quite unexpected because it is based
on the binary representation of the pile sizes. Let b1, b2, . . . , bI be the pile sizes
in binary. Compute their binary digital sum, also known as the nim sum, defined
as the sum of binary digits discarding any carry. (In other words, a binary digit
si in the sum is 0 if the number of 1’s in the ith position in the addends is even,
and it is 1 if the number of 1’s is odd.) It turns out that an instance of Nim is a
winning one for the player to move next if and only if its nim sum contains at least
one 1; consequently, Nim’s instance is a losing instance if and only if its nim sum
contains only zeros. For example, for the commonly played instance with n1 = 3,
n2 = 4, n3 = 5, the nim sum is
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011
100
101

010

Since this sum contains a 1, the instance is a winning one for the player moving
first. To find a winning move from this position, the player needs to change one of
the three bit strings so that the new nim sum contains only 0’s. It is not difficult to
see that the only way to accomplish this is to remove two chips from the first pile.

This ingenious solution to the game of Nim was discovered by Harvard math-
ematics professor C. L. Bouton more than 100 years ago. Since then, mathemati-
cians have developed a much more general theory of such games. An excellent
account of this theory, with applications to many specific games, is given in the
monograph by E. R. Berlekamp, J. H. Conway, and R. K. Guy [Ber03].

Exercises 4.5

1. a. If we measure an instance size of computing the greatest common divisor
of m and n by the size of the second number n, by how much can the size
decrease after one iteration of Euclid’s algorithm?

b. Prove that an instance size will always decrease at least by a factor of two
after two successive iterations of Euclid’s algorithm.

2. Apply quickselect to find the median of the list of numbers 9, 12, 5, 17, 20,
30, 8.

3. Write pseudocode for a nonrecursive implementation of quickselect.

4. Derive the formula underlying interpolation search.

5. Give an example of the worst-case input for interpolation search and show
that the algorithm is linear in the worst case.

6. a. Find the smallest value of n for which log2 log2 n + 1 is greater than 6.

b. Determine which, if any, of the following assertions are true:
i. log log n ∈ o(log n) ii. log log n ∈ �(log n) iii. log log n ∈ �(log n)

7. a. Outline an algorithm for finding the largest key in a binary search tree.
Would you classify your algorithm as a variable-size-decrease algorithm?

b. What is the time efficiency class of your algorithm in the worst case?

8. a. Outline an algorithm for deleting a key from a binary search tree. Would
you classify this algorithm as a variable-size-decrease algorithm?

b. What is the time efficiency class of your algorithm in the worst case?

9. Outline a variable-size-decrease algorithm for constructing an Eulerian circuit
in a connected graph with all vertices of even degrees.
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10. Misère one-pile Nim Consider the so-called misère version of the one-pile
Nim, in which the player taking the last chip loses the game. All the other
conditions of the game remain the same, i.e., the pile contains n chips and on
each move a player takes at least one but no more than m chips. Identify the
winning and losing positions (for the player to move next) in this game.

11. a. Moldy chocolate Two players take turns by breaking an m × n chocolate
bar, which has one spoiled 1 × 1 square. Each break must be a single
straight line cutting all the way across the bar along the boundaries between
the squares. After each break, the player who broke the bar last eats the
piece that does not contain the spoiled square. The player left with the
spoiled square loses the game. Is it better to go first or second in this game?

b. Write an interactive program to play this game with the computer. Your
program should make a winning move in a winning position and a random
legitimate move in a losing position.

12. Flipping pancakes There are n pancakes all of different sizes that are stacked
on top of each other. You are allowed to slip a flipper under one of the
pancakes and flip over the whole stack above the flipper. The purpose is to
arrange pancakes according to their size with the biggest at the bottom. (You
can see a visualization of this puzzle on the Interactive Mathematics Miscellany
and Puzzles site [Bog].) Design an algorithm for solving this puzzle.

13. You need to search for a given number in an n × n matrix in which every
row and every column is sorted in increasing order. Can you design a O(n)

algorithm for this problem? [Laa10]

SUMMARY

Decrease-and-conquer is a general algorithm design technique, based on
exploiting a relationship between a solution to a given instance of a problem
and a solution to a smaller instance of the same problem. Once such a
relationship is established, it can be exploited either top down (usually
recursively) or bottom up.

There are three major variations of decrease-and-conquer:
. decrease-by-a-constant, most often by one (e.g., insertion sort)
. decrease-by-a-constant-factor, most often by the factor of two (e.g., binary

search)
. variable-size-decrease (e.g., Euclid’s algorithm)

Insertion sort is a direct application of the decrease-(by one)-and-conquer
technique to the sorting problem. It is a �(n2) algorithm both in the worst
and average cases, but it is about twice as fast on average than in the worst case.
The algorithm’s notable advantage is a good performance on almost-sorted
arrays.
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A digraph is a graph with directions on its edges. The topological sorting
problem asks to list vertices of a digraph in an order such that for every edge
of the digraph, the vertex it starts at is listed before the vertex it points to.
This problem has a solution if and only if a digraph is a dag (directed acyclic
graph), i.e., it has no directed cycles.

There are two algorithms for solving the topological sorting problem. The first
one is based on depth-first search; the second is based on a direct application
of the decrease-by-one technique.

The decrease-by-one technique is a natural approach to developing algo-
rithms for generating elementary combinatorial objects. The most efficient
class of such algorithms are minimal-change algorithms. However, the num-
ber of combinatorial objects grows so fast that even the best algorithms are
of practical interest only for very small instances of such problems.

Binary search is a very efficient algorithm for searching in a sorted array. It
is a principal example of a decrease-by-a-constant-factor algorithm. Other
examples include exponentiation by squaring, identifying a fake coin with a
balance scale, Russian peasant multiplication, and the Josephus problem.

For some decrease-and-conquer algorithms, the size reduction varies from
one iteration of the algorithm to another. Examples of such variable-size-
decrease algorithms include Euclid’s algorithm, the partition-based algorithm
for the selection problem, interpolation search, and searching and insertion in
a binary search tree. Nim exemplifies games that proceed through a series of
diminishing instances of the same game.



5
Divide-and-Conquer

Whatever man prays for, he prays for a miracle. Every prayer reduces itself
to this—Great God, grant that twice two be not four.

—Ivan Turgenev (1818–1883), Russian novelist and short-story writer

Divide-and-conquer is probably the best-known general algorithm design
technique. Though its fame may have something to do with its catchy name, it

is well deserved: quite a few very efficient algorithms are specific implementations
of this general strategy. Divide-and-conquer algorithms work according to the
following general plan:

1. A problem is divided into several subproblems of the same type, ideally of
about equal size.

2. The subproblems are solved (typically recursively, though sometimes a dif-
ferent algorithm is employed, especially when subproblems become small
enough).

3. If necessary, the solutions to the subproblems are combined to get a solution
to the original problem.

The divide-and-conquer technique is diagrammed in Figure 5.1, which depicts
the case of dividing a problem into two smaller subproblems, by far the most widely
occurring case (at least for divide-and-conquer algorithms designed to be executed
on a single-processor computer).

As an example, let us consider the problem of computing the sum of n numbers
a0, . . . , an−1. If n > 1, we can divide the problem into two instances of the same
problem: to compute the sum of the first �n/2� numbers and to compute the sum
of the remaining �n/2� numbers. (Of course, if n = 1, we simply return a0 as the
answer.) Once each of these two sums is computed by applying the same method
recursively, we can add their values to get the sum in question:

a0 + . . . + an−1 = (a0 + . . . + a�n/2�−1) + (a�n/2� + . . . + an−1).

Is this an efficient way to compute the sum of n numbers? A moment of
reflection (why could it be more efficient than the brute-force summation?), a

169
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subproblem 1
of size n/2

subproblem 2
of size n/2

solution to
subproblem 1

solution to
subproblem 2

solution to
the original problem

problem        of size n

FIGURE 5.1 Divide-and-conquer technique (typical case).

small example of summing, say, four numbers by this algorithm, a formal analysis
(which follows), and common sense (we do not normally compute sums this way,
do we?) all lead to a negative answer to this question.1

Thus, not every divide-and-conquer algorithm is necessarily more efficient
than even a brute-force solution. But often our prayers to the Goddess of
Algorithmics—see the chapter’s epigraph—are answered, and the time spent on
executing the divide-and-conquer plan turns out to be significantly smaller than
solving a problem by a different method. In fact, the divide-and-conquer approach
yields some of the most important and efficient algorithms in computer science.
We discuss a few classic examples of such algorithms in this chapter. Though we
consider only sequential algorithms here, it is worth keeping in mind that the
divide-and-conquer technique is ideally suited for parallel computations, in which
each subproblem can be solved simultaneously by its own processor.

1. Actually, the divide-and-conquer algorithm, called the pairwise summation, may substantially reduce
the accumulated round-off error of the sum of numbers that can be represented only approximately
in a digital computer [Hig93].
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As mentioned above, in the most typical case of divide-and-conquer a prob-
lem’s instance of size n is divided into two instances of size n/2. More generally,
an instance of size n can be divided into b instances of size n/b, with a of them
needing to be solved. (Here, a and b are constants; a ≥ 1 and b > 1.) Assuming
that size n is a power of b to simplify our analysis, we get the following recurrence
for the running time T (n):

T (n) = aT (n/b) + f (n), (5.1)

where f (n) is a function that accounts for the time spent on dividing an instance
of size n into instances of size n/b and combining their solutions. (For the sum
example above, a = b = 2 and f (n) = 1.) Recurrence (5.1) is called the general
divide-and-conquer recurrence. Obviously, the order of growth of its solution T (n)

depends on the values of the constants a and b and the order of growth of the
function f (n). The efficiency analysis of many divide-and-conquer algorithms is
greatly simplified by the following theorem (see Appendix B).

Master Theorem If f (n) ∈ �(nd) where d ≥ 0 in recurrence (5.1), then

T (n) ∈
⎧⎨
⎩

�(nd) if a < bd ,
�(nd log n) if a = bd ,
�(nlogb a) if a > bd .

Analogous results hold for the O and � notations, too.

For example, the recurrence for the number of additions A(n) made by the
divide-and-conquer sum-computation algorithm (see above) on inputs of size
n = 2k is

A(n) = 2A(n/2) + 1.

Thus, for this example, a = 2, b = 2, and d = 0; hence, since a > bd,

A(n) ∈ �(nlogb a) = �(nlog2 2) = �(n).

Note that we were able to find the solution’s efficiency class without going through
the drudgery of solving the recurrence. But, of course, this approach can only es-
tablish a solution’s order of growth to within an unknown multiplicative constant,
whereas solving a recurrence equation with a specific initial condition yields an
exact answer (at least for n’s that are powers of b).

It is also worth pointing out that if a = 1, recurrence (5.1) covers decrease-
by-a-constant-factor algorithms discussed in the previous chapter. In fact, some
people consider such algorithms as binary search degenerate cases of divide-and-
conquer, where just one of two subproblems of half the size needs to be solved.
It is better not to do this and consider decrease-by-a-constant-factor and divide-
and-conquer as different design paradigms.
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5.1 Mergesort

Mergesort is a perfect example of a successful application of the divide-and-
conquer technique. It sorts a given array A[0..n − 1] by dividing it into two halves
A[0..�n/2� − 1] and A[�n/2�..n − 1], sorting each of them recursively, and then
merging the two smaller sorted arrays into a single sorted one.

ALGORITHM Mergesort(A[0..n − 1])

//Sorts array A[0..n − 1] by recursive mergesort
//Input: An array A[0..n − 1] of orderable elements
//Output: Array A[0..n − 1] sorted in nondecreasing order
if n > 1

copy A[0..�n/2� − 1] to B[0..�n/2� − 1]
copy A[�n/2�..n − 1] to C[0..�n/2� − 1]
Mergesort(B[0..�n/2� − 1])
Mergesort(C[0..�n/2� − 1])
Merge(B, C, A) //see below

The merging of two sorted arrays can be done as follows. Two pointers (array
indices) are initialized to point to the first elements of the arrays being merged.
The elements pointed to are compared, and the smaller of them is added to a new
array being constructed; after that, the index of the smaller element is incremented
to point to its immediate successor in the array it was copied from. This operation
is repeated until one of the two given arrays is exhausted, and then the remaining
elements of the other array are copied to the end of the new array.

ALGORITHM Merge(B[0..p − 1], C[0..q − 1], A[0..p + q − 1])

//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p − 1] and C[0..q − 1] both sorted
//Output: Sorted array A[0..p + q − 1] of the elements of B and C

i ← 0; j ← 0; k ← 0
while i < p and j < q do

if B[i] ≤ C[j ]
A[k] ← B[i]; i ← i + 1

else A[k] ← C[j ]; j ← j + 1
k ← k + 1

if i = p

copy C[j..q − 1] to A[k..p + q − 1]
else copy B[i..p − 1] to A[k..p + q − 1]

The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in
Figure 5.2.
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8  3  2  9  7  1  5  4

1  2  3  4  5  7  8  9

8  3  2  9

8  3 2  9 7  1 5  4

3  8 2  9 1  7 4  5

5 4

7  1  5  4

2  3  8  9 1  4  5  7

7 12 98 3

FIGURE 5.2 Example of mergesort operation.

How efficient is mergesort? Assuming for simplicity that n is a power of 2, the
recurrence relation for the number of key comparisons C(n) is

C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0.

Let us analyze Cmerge(n), the number of key comparisons performed during the
merging stage. At each step, exactly one comparison is made, after which the total
number of elements in the two arrays still needing to be processed is reduced
by 1. In the worst case, neither of the two arrays becomes empty before the
other one contains just one element (e.g., smaller elements may come from the
alternating arrays). Therefore, for the worst case, Cmerge(n) = n − 1, and we have
the recurrence

Cworst(n) = 2Cworst(n/2) + n − 1 for n > 1, Cworst(1) = 0.

Hence, according to the Master Theorem, Cworst(n) ∈ �(n log n) (why?). In fact,
it is easy to find the exact solution to the worst-case recurrence for n = 2k:

Cworst(n) = n log2 n − n + 1.
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The number of key comparisons made by mergesort in the worst case comes
very close to the theoretical minimum2 that any general comparison-based sorting
algorithm can have. For large n, the number of comparisons made by this algo-
rithm in the average case turns out to be about 0.25n less (see [Gon91, p. 173])
and hence is also in �(n log n). A noteworthy advantage of mergesort over quick-
sort and heapsort—the two important advanced sorting algorithms to be discussed
later—is its stability (see Problem 7 in this section’s exercises). The principal short-
coming of mergesort is the linear amount of extra storage the algorithm requires.
Though merging can be done in-place, the resulting algorithm is quite complicated
and of theoretical interest only.

There are two main ideas leading to several variations of mergesort. First, the
algorithm can be implemented bottom up by merging pairs of the array’s elements,
then merging the sorted pairs, and so on. (If n is not a power of 2, only slight
bookkeeping complications arise.) This avoids the time and space overhead of
using a stack to handle recursive calls. Second, we can divide a list to be sorted
in more than two parts, sort each recursively, and then merge them together. This
scheme, which is particularly useful for sorting files residing on secondary memory
devices, is called multiway mergesort.

Exercises 5.1

1. a. Write pseudocode for a divide-and-conquer algorithm for finding the po-
sition of the largest element in an array of n numbers.

b. What will be your algorithm’s output for arrays with several elements of
the largest value?

c. Set up and solve a recurrence relation for the number of key comparisons
made by your algorithm.

d. How does this algorithm compare with the brute-force algorithm for this
problem?

2. a. Write pseudocode for a divide-and-conquer algorithm for finding values
of both the largest and smallest elements in an array of n numbers.

b. Set up and solve (for n = 2k) a recurrence relation for the number of key
comparisons made by your algorithm.

c. How does this algorithm compare with the brute-force algorithm for this
problem?

3. a. Write pseudocode for a divide-and-conquer algorithm for the exponenti-
ation problem of computing an where n is a positive integer.

b. Set up and solve a recurrence relation for the number of multiplications
made by this algorithm.

2. As we shall see in Section 11.2, this theoretical minimum is �log2 n!� ≈ �n log2 n − 1.44n�.
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c. How does this algorithm compare with the brute-force algorithm for this
problem?

4. As mentioned in Chapter 2, logarithm bases are irrelevant in most contexts
arising in analyzing an algorithm’s efficiency class. Is this true for both asser-
tions of the Master Theorem that include logarithms?

5. Find the order of growth for solutions of the following recurrences.
a. T (n) = 4T (n/2) + n, T (1) = 1

b. T (n) = 4T (n/2) + n2, T (1) = 1

c. T (n) = 4T (n/2) + n3, T (1) = 1

6. Apply mergesort to sort the list E, X, A, M, P, L, E in alphabetical order.

7. Is mergesort a stable sorting algorithm?

8. a. Solve the recurrence relation for the number of key comparisons made by
mergesort in the worst case. You may assume that n = 2k.

b. Set up a recurrence relation for the number of key comparisons made by
mergesort on best-case inputs and solve it for n = 2k.

c. Set up a recurrence relation for the number of key moves made by the
version of mergesort given in Section 5.1. Does taking the number of key
moves into account change the algorithm’s efficiency class?

9. Let A[0..n − 1] be an array of n real numbers. A pair (A[i], A[j ]) is said to
be an inversion if these numbers are out of order, i.e., i < j but A[i] > A[j ].
Design an O(n log n) algorithm for counting the number of inversions.

10. Implement the bottom-up version of mergesort in the language of your choice.

11. Tromino puzzle A tromino (more accurately, a right tromino) is an L-shaped
tile formed by three 1 × 1 squares. The problem is to cover any 2n × 2n chess-
board with a missing square with trominoes. Trominoes can be oriented in an
arbitrary way, but they should cover all the squares of the board except the
missing one exactly and with no overlaps. [Gol94]

Design a divide-and-conquer algorithm for this problem.
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5.2 Quicksort

Quicksort is the other important sorting algorithm that is based on the divide-and-
conquer approach. Unlike mergesort, which divides its input elements according
to their position in the array, quicksort divides them according to their value.
We already encountered this idea of an array partition in Section 4.5, where we
discussed the selection problem. A partition is an arrangement of the array’s
elements so that all the elements to the left of some element A[s] are less than
or equal to A[s], and all the elements to the right of A[s] are greater than or equal
to it:

A[0] . . . A[s − 1]︸ ︷︷ ︸
all are ≤A[s]

A[s] A[s + 1] . . . A[n − 1]︸ ︷︷ ︸
all are ≥A[s]

Obviously, after a partition is achieved, A[s] will be in its final position in the
sorted array, and we can continue sorting the two subarrays to the left and to the
right of A[s] independently (e.g., by the same method). Note the difference with
mergesort: there, the division of the problem into two subproblems is immediate
and the entire work happens in combining their solutions; here, the entire work
happens in the division stage, with no work required to combine the solutions to
the subproblems.

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1]) where

ALGORITHM Quicksort(A[l..r])

//Sorts a subarray by quicksort
//Input: Subarray of array A[0..n − 1], defined by its left and right
// indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order
if l < r

s ←Partition(A[l..r]) //s is a split position
Quicksort(A[l..s − 1])
Quicksort(A[s + 1..r])

As a partition algorithm, we can certainly use the Lomuto partition discussed
in Section 4.5. Alternatively, we can partition A[0..n − 1] and, more generally, its
subarray A[l..r] (0 ≤ l < r ≤ n − 1) by the more sophisticated method suggested by
C.A.R. Hoare, the prominent British computer scientist who invented quicksort.3

3. C.A.R. Hoare, at age 26, invented his algorithm in 1960 while trying to sort words for a machine
translation project from Russian to English. Says Hoare, “My first thought on how to do this was
bubblesort and, by an amazing stroke of luck, my second thought was Quicksort.” It is hard to disagree
with his overall assessment: “I have been very lucky. What a wonderful way to start a career in
Computing, by discovering a new sorting algorithm!” [Hoa96]. Twenty years later, he received the
Turing Award for “fundamental contributions to the definition and design of programming languages”;
in 1980, he was also knighted for services to education and computer science.
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As before, we start by selecting a pivot—an element with respect to whose value
we are going to divide the subarray. There are several different strategies for
selecting a pivot; we will return to this issue when we analyze the algorithm’s
efficiency. For now, we use the simplest strategy of selecting the subarray’s first
element: p = A[l].

Unlike the Lomuto algorithm, we will now scan the subarray from both ends,
comparing the subarray’s elements to the pivot. The left-to-right scan, denoted
below by index pointer i, starts with the second element. Since we want elements
smaller than the pivot to be in the left part of the subarray, this scan skips over
elements that are smaller than the pivot and stops upon encountering the first
element greater than or equal to the pivot. The right-to-left scan, denoted below
by index pointer j, starts with the last element of the subarray. Since we want
elements larger than the pivot to be in the right part of the subarray, this scan
skips over elements that are larger than the pivot and stops on encountering the
first element smaller than or equal to the pivot. (Why is it worth stopping the scans
after encountering an element equal to the pivot? Because doing this tends to yield
more even splits for arrays with a lot of duplicates, which makes the algorithm run
faster. For example, if we did otherwise for an array of n equal elements, we would
have gotten a split into subarrays of sizes n − 1 and 0, reducing the problem size
just by 1 after scanning the entire array.)

After both scans stop, three situations may arise, depending on whether or not
the scanning indices have crossed. If scanning indices i and j have not crossed, i.e.,
i < j, we simply exchange A[i] and A[j ] and resume the scans by incrementing i

and decrementing j, respectively:
ji → ←

p all are ≤ p all are ≥ p. . . ≤ p≥ p

If the scanning indices have crossed over, i.e., i > j, we will have partitioned the
subarray after exchanging the pivot with A[j ]:

j i →←
p all are ≤ p all are ≥ p≥ p≤ p

Finally, if the scanning indices stop while pointing to the same element, i.e., i = j,

the value they are pointing to must be equal to p (why?). Thus, we have the
subarray partitioned, with the split position s = i = j :

j = i →←
p all are ≤ p all are ≥ p= p

We can combine the last case with the case of crossed-over indices (i > j) by
exchanging the pivot with A[j ] whenever i ≥ j .

Here is pseudocode implementing this partitioning procedure.
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ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element
// as a pivot
//Input: Subarray of array A[0..n − 1], defined by its left and right
// indices l and r (l < r)

//Output: Partition of A[l..r], with the split position returned as
// this function’s value
p ← A[l]
i ← l; j ← r + 1
repeat

repeat i ← i + 1 until A[i] ≥ p

repeat j ← j − 1 until A[j ] ≤ p

swap(A[i], A[j ])
until i ≥ j

swap(A[i], A[j ]) //undo last swap when i ≥ j

swap(A[l], A[j ])
return j

Note that index i can go out of the subarray’s bounds in this pseudocode.
Rather than checking for this possibility every time index i is incremented, we can
append to array A[0..n − 1]a “sentinel” that would prevent index i from advancing
beyond position n. Note that the more sophisticated method of pivot selection
mentioned at the end of the section makes such a sentinel unnecessary.

An example of sorting an array by quicksort is given in Figure 5.3.
We start our discussion of quicksort’s efficiency by noting that the number

of key comparisons made before a partition is achieved is n + 1 if the scanning
indices cross over and n if they coincide (why?). If all the splits happen in the
middle of corresponding subarrays, we will have the best case. The number of key
comparisons in the best case satisfies the recurrence

Cbest(n) = 2Cbest(n/2) + n for n > 1, Cbest(1) = 0.

According to the Master Theorem, Cbest(n) ∈ �(n log2 n); solving it exactly for
n = 2k yields Cbest(n) = n log2 n.

In the worst case, all the splits will be skewed to the extreme: one of the
two subarrays will be empty, and the size of the other will be just 1 less than the
size of the subarray being partitioned. This unfortunate situation will happen, in
particular, for increasing arrays, i.e., for inputs for which the problem is already
solved! Indeed, if A[0..n − 1] is a strictly increasing array and we use A[0] as the
pivot, the left-to-right scan will stop on A[1] while the right-to-left scan will go all
the way to reach A[0], indicating the split at position 0:
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FIGURE 5.3 Example of quicksort operation. (a) Array’s transformations with pivots
shown in bold. (b) Tree of recursive calls to Quicksort with input values l

and r of subarray bounds and split position s of a partition obtained.

A[0] A[1] A[n–1].  .  .
j i →←

So, after making n + 1 comparisons to get to this partition and exchanging the
pivot A[0] with itself, the algorithm will be left with the strictly increasing array
A[1..n − 1] to sort. This sorting of strictly increasing arrays of diminishing sizes will
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continue until the last one A[n − 2..n − 1] has been processed. The total number
of key comparisons made will be equal to

Cworst(n) = (n + 1) + n + . . . + 3 = (n + 1)(n + 2)

2
− 3 ∈ �(n2).

Thus, the question about the utility of quicksort comes down to its average-
case behavior. Let Cavg(n) be the average number of key comparisons made by
quicksort on a randomly ordered array of size n. A partition can happen in any
position s (0 ≤ s ≤ n − 1) after n + 1comparisons are made to achieve the partition.
After the partition, the left and right subarrays will have s and n − 1 − s elements,
respectively. Assuming that the partition split can happen in each position s with
the same probability 1/n, we get the following recurrence relation:

Cavg(n) = 1
n

n−1∑
s=0

[(n + 1) + Cavg(s) + Cavg(n − 1 − s)] for n > 1,

Cavg(0) = 0, Cavg(1) = 0.

Its solution, which is much trickier than the worst- and best-case analyses, turns
out to be

Cavg(n) ≈ 2n ln n ≈ 1.39n log2 n.

Thus, on the average, quicksort makes only 39% more comparisons than in the
best case. Moreover, its innermost loop is so efficient that it usually runs faster than
mergesort (and heapsort, another n log n algorithm that we discuss in Chapter 6)
on randomly ordered arrays of nontrivial sizes. This certainly justifies the name
given to the algorithm by its inventor.

Because of quicksort’s importance, there have been persistent efforts over the
years to refine the basic algorithm. Among several improvements discovered by
researchers are:

better pivot selection methods such as randomized quicksort that uses a
random element or the median-of-three method that uses the median of the
leftmost, rightmost, and the middle element of the array
switching to insertion sort on very small subarrays (between 5 and 15 elements
for most computer systems) or not sorting small subarrays at all and finishing
the algorithm with insertion sort applied to the entire nearly sorted array
modifications of the partitioning algorithm such as the three-way partition
into segments smaller than, equal to, and larger than the pivot (see Problem 9
in this section’s exercises)

According to Robert Sedgewick [Sed11, p. 296], the world’s leading expert on
quicksort, such improvements in combination can cut the running time of the
algorithm by 20%–30%.

Like any sorting algorithm, quicksort has weaknesses. It is not stable. It
requires a stack to store parameters of subarrays that are yet to be sorted. While
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the size of this stack can be made to be in O(log n) by always sorting first the
smaller of two subarrays obtained by partitioning, it is worse than the O(1) space
efficiency of heapsort. Although more sophisticated ways of choosing a pivot make
the quadratic running time of the worst case very unlikely, they do not eliminate
it completely. And even the performance on randomly ordered arrays is known
to be sensitive not only to implementation details of the algorithm but also to
both computer architecture and data type. Still, the January/February 2000 issue of
Computing in Science & Engineering,a joint publication of the American Institute
of Physics and the IEEE Computer Society, selected quicksort as one of the 10
algorithms “with the greatest influence on the development and practice of science
and engineering in the 20th century.”

Exercises 5.2

1. Apply quicksort to sort the list E, X, A, M, P, L, E in alphabetical order.
Draw the tree of the recursive calls made.

2. For the partitioning procedure outlined in this section:
a. Prove that if the scanning indices stop while pointing to the same element,

i.e., i = j, the value they are pointing to must be equal to p.

b. Prove that when the scanning indices stop, j cannot point to an element
more than one position to the left of the one pointed to by i.

3. Give an example showing that quicksort is not a stable sorting algorithm.

4. Give an example of an array of n elements for which the sentinel mentioned
in the text is actually needed. What should be its value? Also explain why a
single sentinel suffices for any input.

5. For the version of quicksort given in this section:
a. Are arrays made up of all equal elements the worst-case input, the best-

case input, or neither?

b. Are strictly decreasing arrays the worst-case input, the best-case input, or
neither?

6. a. For quicksort with the median-of-three pivot selection, are strictly increas-
ing arrays the worst-case input, the best-case input, or neither?

b. Answer the same question for strictly decreasing arrays.

7. a. Estimate how many times faster quicksort will sort an array of one million
random numbers than insertion sort.

b. True or false: For every n > 1, there are n-element arrays that are sorted
faster by insertion sort than by quicksort?

8. Design an algorithm to rearrange elements of a given array of n real num-
bers so that all its negative elements precede all its positive elements. Your
algorithm should be both time efficient and space efficient.
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9. a. The Dutch national flag problem is to rearrange an array of characters R,
W , and B (red, white, and blue are the colors of the Dutch national flag) so
that all the R’s come first, the W ’s come next, and the B’s come last. [Dij76]
Design a linear in-place algorithm for this problem.

b. Explain how a solution to the Dutch national flag problem can be used in
quicksort.

10. Implement quicksort in the language of your choice. Run your program on
a sample of inputs to verify the theoretical assertions about the algorithm’s
efficiency.

11. Nuts and bolts You are given a collection of n bolts of different widths and
n corresponding nuts. You are allowed to try a nut and bolt together, from
which you can determine whether the nut is larger than the bolt, smaller than
the bolt, or matches the bolt exactly. However, there is no way to compare
two nuts together or two bolts together. The problem is to match each bolt
to its nut. Design an algorithm for this problem with average-case efficiency
in �(n log n). [Raw91]

5.3 Binary Tree Traversals and Related Properties

In this section, we see how the divide-and-conquer technique can be applied to
binary trees. A binary tree T is defined as a finite set of nodes that is either empty
or consists of a root and two disjoint binary trees TL and TR called, respectively, the
left and right subtree of the root. We usually think of a binary tree as a special case
of an ordered tree (Figure 5.4). (This standard interpretation was an alternative
definition of a binary tree in Section 1.4.)

Since the definition itself divides a binary tree into two smaller structures of
the same type, the left subtree and the right subtree, many problems about binary
trees can be solved by applying the divide-and-conquer technique. As an example,
let us consider a recursive algorithm for computing the height of a binary tree.
Recall that the height is defined as the length of the longest path from the root to
a leaf. Hence, it can be computed as the maximum of the heights of the root’s left

Tleft Tright

FIGURE 5.4 Standard representation of a binary tree.



5.3 Binary Tree Traversals and Related Properties 183

and right subtrees plus 1. (We have to add 1 to account for the extra level of the
root.) Also note that it is convenient to define the height of the empty tree as −1.
Thus, we have the following recursive algorithm.

ALGORITHM Height(T )

//Computes recursively the height of a binary tree
//Input: A binary tree T

//Output: The height of T

if T = ∅ return −1
else return max{Height(Tlef t), Height(Tright)} + 1

We measure the problem’s instance size by the number of nodes n(T ) in a
given binary tree T . Obviously, the number of comparisons made to compute
the maximum of two numbers and the number of additions A(n(T )) made by the
algorithm are the same. We have the following recurrence relation for A(n(T )):

A(n(T )) = A(n(Tlef t)) + A(n(Tright)) + 1 for n(T ) > 0,

A(0) = 0.

Before we solve this recurrence (can you tell what its solution is?), let us note
that addition is not the most frequently executed operation of this algorithm. What
is? Checking—and this is very typical for binary tree algorithms—that the tree is
not empty. For example, for the empty tree, the comparison T = ∅ is executed
once but there are no additions, and for a single-node tree, the comparison and
addition numbers are 3 and 1, respectively.

It helps in the analysis of tree algorithms to draw the tree’s extension by
replacing the empty subtrees by special nodes. The extra nodes (shown by little
squares in Figure 5.5) are called external; the original nodes (shown by little
circles) are called internal. By definition, the extension of the empty binary tree
is a single external node.

It is easy to see that the Height algorithm makes exactly one addition for every
internal node of the extended tree, and it makes one comparison to check whether

(b)(a)

FIGURE 5.5 Binary tree (on the left) and its extension (on the right). Internal nodes are
shown as circles; external nodes are shown as squares.
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the tree is empty for every internal and external node. Therefore, to ascertain the
algorithm’s efficiency, we need to know how many external nodes an extended
binary tree with n internal nodes can have. After checking Figure 5.5 and a few
similar examples, it is easy to hypothesize that the number of external nodes x is
always 1 more than the number of internal nodes n:

x = n + 1. (5.2)

To prove this equality, consider the total number of nodes, both internal and
external. Since every node, except the root, is one of the two children of an internal
node, we have the equation

2n + 1 = x + n,

which immediately implies equality (5.2).
Note that equality (5.2) also applies to any nonempty full binary tree, in

which, by definition, every node has either zero or two children: for a full binary
tree, n and x denote the numbers of parental nodes and leaves, respectively.

Returning to algorithm Height, the number of comparisons to check whether
the tree is empty is

C(n) = n + x = 2n + 1,

and the number of additions is

A(n) = n.

The most important divide-and-conquer algorithms for binary trees are the
three classic traversals: preorder, inorder, and postorder. All three traversals visit
nodes of a binary tree recursively, i.e., by visiting the tree’s root and its left and
right subtrees. They differ only by the timing of the root’s visit:

In the preorder traversal, the root is visited before the left and right subtrees
are visited (in that order).
In the inorder traversal, the root is visited after visiting its left subtree but
before visiting the right subtree.
In the postorder traversal, the root is visited after visiting the left and right
subtrees (in that order).

These traversals are illustrated in Figure 5.6. Their pseudocodes are quite
straightforward, repeating the descriptions given above. (These traversals are also
a standard feature of data structures textbooks.) As to their efficiency analysis, it
is identical to the above analysis of the Height algorithm because a recursive call
is made for each node of an extended binary tree.

Finally, we should note that, obviously, not all questions about binary trees
require traversals of both left and right subtrees. For example, the search and insert
operations for a binary search tree require processing only one of the two subtrees.
Accordingly, we considered them in Section 4.5 not as applications of divide-and-
conquer but rather as examples of the variable-size-decrease technique.
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b

a

d e

c
preorder:
inorder:
postorder:

a, b, d, g, e, c, f
d, g, b, e, a, f, c
g, d, e, b, f, c, a

g

f

FIGURE 5.6 Binary tree and its traversals.

Exercises 5.3

1. Design a divide-and-conquer algorithm for computing the number of levels in
a binary tree. (In particular, the algorithm must return 0 and 1 for the empty
and single-node trees, respectively.) What is the time efficiency class of your
algorithm?

2. The following algorithm seeks to compute the number of leaves in a binary
tree.

ALGORITHM LeafCounter(T )

//Computes recursively the number of leaves in a binary tree
//Input: A binary tree T

//Output: The number of leaves in T

if T = ∅ return 0
else return LeafCounter(Tlef t)+ LeafCounter(Tright)

Is this algorithm correct? If it is, prove it; if it is not, make an appropriate
correction.

3. Can you compute the height of a binary tree with the same asymptotic ef-
ficiency as the section’s divide-and-conquer algorithm but without using a
stack explicitly or implicitly? Of course, you may use a different algorithm
altogether.

4. Prove equality (5.2) by mathematical induction.

5. Traverse the following binary tree
a. in preorder.

b. in inorder.

c. in postorder.
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b

a

d e

c

f

6. Write pseudocode for one of the classic traversal algorithms (preorder, in-
order, and postorder) for binary trees. Assuming that your algorithm is recur-
sive, find the number of recursive calls made.

7. Which of the three classic traversal algorithms yields a sorted list if applied to
a binary search tree? Prove this property.

8. a. Draw a binary tree with 10 nodes labeled 0, 1, . . . , 9 in such a way that the
inorder and postorder traversals of the tree yield the following lists: 9, 3,
1, 0, 4, 2, 7, 6, 8, 5 (inorder) and 9, 1, 4, 0, 3, 6, 7, 5, 8, 2 (postorder).

b. Give an example of two permutations of the same n labels 0, 1, . . . , n − 1
that cannot be inorder and postorder traversal lists of the same binary tree.

c. Design an algorithm that constructs a binary tree for which two given
lists of n labels 0, 1, . . . , n − 1 are generated by the inorder and postorder
traversals of the tree. Your algorithm should also identify inputs for which
the problem has no solution.

9. The internal path length I of an extended binary tree is defined as the sum
of the lengths of the paths—taken over all internal nodes—from the root to
each internal node. Similarly, the external path length E of an extended binary
tree is defined as the sum of the lengths of the paths—taken over all external
nodes—from the root to each external node. Prove that E = I + 2n where n

is the number of internal nodes in the tree.

10. Write a program for computing the internal path length of an extended binary
tree. Use it to investigate empirically the average number of key comparisons
for searching in a randomly generated binary search tree.

11. Chocolate bar puzzle Given an n × m chocolate bar, you need to break it
into nm 1 × 1 pieces. You can break a bar only in a straight line, and only one
bar can be broken at a time. Design an algorithm that solves the problem with
the minimum number of bar breaks. What is this minimum number? Justify
your answer by using properties of a binary tree.

5.4 Multiplication of Large Integers and
Strassen’s Matrix Multiplication

In this section, we examine two surprising algorithms for seemingly straightfor-
ward tasks: multiplying two integers and multiplying two square matrices. Both
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achieve a better asymptotic efficiency by ingenious application of the divide-and-
conquer technique.

Multiplication of Large Integers

Some applications, notably modern cryptography, require manipulation of inte-
gers that are over 100 decimal digits long. Since such integers are too long to fit in
a single word of a modern computer, they require special treatment. This practi-
cal need supports investigations of algorithms for efficient manipulation of large
integers. In this section, we outline an interesting algorithm for multiplying such
numbers. Obviously, if we use the conventional pen-and-pencil algorithm for mul-
tiplying two n-digit integers, each of the n digits of the first number is multiplied by
each of the n digits of the second number for the total of n2 digit multiplications.
(If one of the numbers has fewer digits than the other, we can pad the shorter
number with leading zeros to equalize their lengths.) Though it might appear that
it would be impossible to design an algorithm with fewer than n2 digit multiplica-
tions, this turns out not to be the case. The miracle of divide-and-conquer comes
to the rescue to accomplish this feat.

To demonstrate the basic idea of the algorithm, let us start with a case of
two-digit integers, say, 23 and 14. These numbers can be represented as follows:

23 = 2 . 101 + 3 . 100 and 14 = 1 . 101 + 4 . 100.

Now let us multiply them:

23 ∗ 14 = (2 . 101 + 3 . 100) ∗ (1 . 101 + 4 . 100)

= (2 ∗ 1)102 + (2 ∗ 4 + 3 ∗ 1)101 + (3 ∗ 4)100.

The last formula yields the correct answer of 322, of course, but it uses the same
four digit multiplications as the pen-and-pencil algorithm. Fortunately, we can
compute the middle term with just one digit multiplication by taking advantage
of the products 2 ∗ 1 and 3 ∗ 4 that need to be computed anyway:

2 ∗ 4 + 3 ∗ 1 = (2 + 3) ∗ (1 + 4) − 2 ∗ 1 − 3 ∗ 4.

Of course, there is nothing special about the numbers we just multiplied.
For any pair of two-digit numbers a = a1a0 and b = b1b0, their product c can be
computed by the formula

c = a ∗ b = c2102 + c1101 + c0,

where

c2 = a1 ∗ b1 is the product of their first digits,

c0 = a0 ∗ b0 is the product of their second digits,

c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0) is the product of the sum of the

a’s digits and the sum of the b’s digits minus the sum of c2 and c0.
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Now we apply this trick to multiplying two n-digit integers a and b where n is
a positive even number. Let us divide both numbers in the middle—after all, we
promised to take advantage of the divide-and-conquer technique. We denote the
first half of the a’s digits by a1 and the second half by a0; for b, the notations are b1
and b0, respectively. In these notations, a = a1a0 implies that a = a110n/2 + a0 and
b = b1b0 implies that b = b110n/2 + b0. Therefore, taking advantage of the same
trick we used for two-digit numbers, we get

c = a ∗ b = (a110n/2 + a0) ∗ (b110n/2 + b0)

= (a1 ∗ b1)10n + (a1 ∗ b0 + a0 ∗ b1)10n/2 + (a0 ∗ b0)

= c210n + c110n/2 + c0,

where

c2 = a1 ∗ b1 is the product of their first halves,

c0 = a0 ∗ b0 is the product of their second halves,

c1 = (a1 + a0) ∗ (b1 + b0) − (c2 + c0) is the product of the sum of the

a’s halves and the sum of the b’s halves minus the sum of c2 and c0.

If n/2 is even, we can apply the same method for computing the products c2, c0,

and c1. Thus, if n is a power of 2, we have a recursive algorithm for computing the
product of two n-digit integers. In its pure form, the recursion is stopped when n

becomes 1. It can also be stopped when we deem n small enough to multiply the
numbers of that size directly.

How many digit multiplications does this algorithm make? Since multiplica-
tion of n-digit numbers requires three multiplications of n/2-digit numbers, the
recurrence for the number of multiplications M(n) is

M(n) = 3M(n/2) for n > 1, M(1) = 1.

Solving it by backward substitutions for n = 2k yields

M(2k) = 3M(2k−1) = 3[3M(2k−2)] = 32M(2k−2)

= . . . = 3iM(2k−i) = . . . = 3kM(2k−k) = 3k.

Since k = log2 n,

M(n) = 3log2 n = nlog2 3 ≈ n1.585.

(On the last step, we took advantage of the following property of logarithms:
alogb c = clogb a.)

But what about additions and subtractions? Have we not decreased the num-
ber of multiplications by requiring more of those operations? Let A(n) be the
number of digit additions and subtractions executed by the above algorithm in
multiplying two n-digit decimal integers. Besides 3A(n/2) of these operations
needed to compute the three products of n/2-digit numbers, the above formulas
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require five additions and one subtraction. Hence, we have the recurrence

A(n) = 3A(n/2) + cn for n > 1, A(1) = 1.

Applying the Master Theorem, which was stated in the beginning of the chapter,
we obtain A(n) ∈ �(nlog2 3), which means that the total number of additions and
subtractions have the same asymptotic order of growth as the number of multipli-
cations.

The asymptotic advantage of this algorithm notwithstanding, how practical is
it? The answer depends, of course, on the computer system and program quality
implementing the algorithm, which might explain the rather wide disparity of
reported results. On some machines, the divide-and-conquer algorithm has been
reported to outperform the conventional method on numbers only 8 decimal digits
long and to run more than twice faster with numbers over 300 decimal digits
long—the area of particular importance for modern cryptography. Whatever this
outperformance “crossover point” happens to be on a particular machine, it is
worth switching to the conventional algorithm after the multiplicands become
smaller than the crossover point. Finally, if you program in an object-oriented
language such as Java, C++, or Smalltalk, you should also be aware that these
languages have special classes for dealing with large integers.

Discovered by 23-year-old Russian mathematician Anatoly Karatsuba in
1960, the divide-and-conquer algorithm proved wrong the then-prevailing opinion
that the time efficiency of any integer multiplication algorithm must be in �(n2).

The discovery encouraged researchers to look for even (asymptotically) faster
algorithms for this and other algebraic problems. We will see such an algorithm
in the next section.

Strassen’s Matrix Multiplication

Now that we have seen that the divide-and-conquer approach can reduce the
number of one-digit multiplications in multiplying two integers, we should not be
surprised that a similar feat can be accomplished for multiplying matrices. Such
an algorithm was published by V. Strassen in 1969 [Str69]. The principal insight
of the algorithm lies in the discovery that we can find the product C of two 2 × 2
matrices A and B with just seven multiplications as opposed to the eight required
by the brute-force algorithm (see Example 3 in Section 2.3). This is accomplished
by using the following formulas:[

c00 c01
c10 c11

]
=
[

a00 a01
a10 a11

]
∗
[

b00 b01
b10 b11

]

=
[

m1 + m4 − m5 + m7 m3 + m5
m2 + m4 m1 + m3 − m2 + m6

]
,

where
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m1 = (a00 + a11) ∗ (b00 + b11),

m2 = (a10 + a11) ∗ b00,

m3 = a00 ∗ (b01 − b11),

m4 = a11 ∗ (b10 − b00),

m5 = (a00 + a01) ∗ b11,

m6 = (a10 − a00) ∗ (b00 + b01),

m7 = (a01 − a11) ∗ (b10 + b11).

Thus, to multiply two 2 × 2 matrices, Strassen’s algorithm makes seven multipli-
cations and 18 additions/subtractions, whereas the brute-force algorithm requires
eight multiplications and four additions. These numbers should not lead us to
multiplying 2 × 2 matrices by Strassen’s algorithm. Its importance stems from its
asymptotic superiority as matrix order n goes to infinity.

Let A and B be two n × n matrices where n is a power of 2. (If n is not a power
of 2, matrices can be padded with rows and columns of zeros.) We can divide A,
B, and their product C into four n/2 × n/2 submatrices each as follows:[

C00 C01

C10 C11

]
=
[
A00 A01

A10 A11

]
∗
[
B00 B01

B10 B11

]
.

It is not difficult to verify that one can treat these submatrices as numbers to
get the correct product. For example, C00 can be computed either as A00 ∗ B00 +
A01 ∗ B10 or as M1 + M4 − M5 + M7 where M1, M4, M5, and M7 are found by
Strassen’s formulas, with the numbers replaced by the corresponding submatrices.
If the seven products of n/2 × n/2 matrices are computed recursively by the same
method, we have Strassen’s algorithm for matrix multiplication.

Let us evaluate the asymptotic efficiency of this algorithm. If M(n) is the
number of multiplications made by Strassen’s algorithm in multiplying two n × n

matrices (where n is a power of 2), we get the following recurrence relation for it:

M(n) = 7M(n/2) for n > 1, M(1) = 1.

Since n = 2k,

M(2k) = 7M(2k−1) = 7[7M(2k−2)] = 72M(2k−2) = . . .

= 7iM(2k−i) . . . = 7kM(2k−k) = 7k.

Since k = log2 n,

M(n) = 7log2 n = nlog2 7 ≈ n2.807,

which is smaller than n3 required by the brute-force algorithm.
Since this savings in the number of multiplications was achieved at the expense

of making extra additions, we must check the number of additions A(n) made by
Strassen’s algorithm. To multiply two matrices of order n > 1, the algorithm needs
to multiply seven matrices of order n/2 and make 18 additions/subtractions of
matrices of size n/2; when n = 1, no additions are made since two numbers are
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simply multiplied. These observations yield the following recurrence relation:

A(n) = 7A(n/2) + 18(n/2)2 for n > 1, A(1) = 0.

Though one can obtain a closed-form solution to this recurrence (see Problem 8
in this section’s exercises), here we simply establish the solution’s order of growth.
According to the Master Theorem, A(n) ∈ �(nlog2 7). In other words, the number
of additions has the same order of growth as the number of multiplications. This
puts Strassen’s algorithm in �(nlog2 7), which is a better efficiency class than �(n3)

of the brute-force method.
Since the time of Strassen’s discovery, several other algorithms for multiplying

two n × n matrices of real numbers in O(nα) time with progressively smaller
constants α have been invented. The fastest algorithm so far is that of Coopersmith
and Winograd [Coo87] with its efficiency in O(n2.376). The decreasing values of
the exponents have been obtained at the expense of the increasing complexity
of these algorithms. Because of large multiplicative constants, none of them is of
practical value. However, they are interesting from a theoretical point of view. On
one hand, they get closer and closer to the best theoretical lower bound known
for matrix multiplication, which is n2 multiplications, though the gap between this
bound and the best available algorithm remains unresolved. On the other hand,
matrix multiplication is known to be computationally equivalent to some other
important problems, such as solving systems of linear equations (discussed in the
next chapter).

Exercises 5.4

1. What are the smallest and largest numbers of digits the product of two decimal
n-digit integers can have?

2. Compute 2101 ∗ 1130 by applying the divide-and-conquer algorithm outlined
in the text.

3. a. Prove the equality alogb c = clogb a, which was used in Section 5.4.

b. Why is nlog2 3 better than 3log2 n as a closed-form formula for M(n)?

4. a. Why did we not include multiplications by 10n in the multiplication count
M(n) of the large-integer multiplication algorithm?

b. In addition to assuming that n is a power of 2, we made, for the sake of
simplicity, another, more subtle, assumption in setting up the recurrences
for M(n) and A(n), which is not always true (it does not change the final
answers, however). What is this assumption?

5. How many one-digit additions are made by the pen-and-pencil algorithm in
multiplying two n-digit integers? You may disregard potential carries.

6. Verify the formulas underlying Strassen’s algorithm for multiplying 2 × 2
matrices.
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7. Apply Strassen’s algorithm to compute⎡
⎢⎢⎣

1 0 2 1
4 1 1 0
0 1 3 0
5 0 2 1

⎤
⎥⎥⎦ ∗

⎡
⎢⎢⎣

0 1 0 1
2 1 0 4
2 0 1 1
1 3 5 0

⎤
⎥⎥⎦

exiting the recursion when n = 2, i.e., computing the products of 2 × 2 matrices
by the brute-force algorithm.

8. Solve the recurrence for the number of additions required by Strassen’s algo-
rithm. Assume that n is a power of 2.

9. V. Pan [Pan78] has discovered a divide-and-conquer matrix multiplication
algorithm that is based on multiplying two 70 × 70 matrices using 143,640
multiplications. Find the asymptotic efficiency of Pan’s algorithm (you may
ignore additions) and compare it with that of Strassen’s algorithm.

10. Practical implementations of Strassen’s algorithm usually switch to the brute-
force method after matrix sizes become smaller than some crossover point.
Run an experiment to determine such a crossover point on your computer
system.

5.5 The Closest-Pair and Convex-Hull Problems
by Divide-and-Conquer

In Section 3.3, we discussed the brute-force approach to solving two classic prob-
lems of computational geometry: the closest-pair problem and the convex-hull
problem. We saw that the two-dimensional versions of these problems can be
solved by brute-force algorithms in �(n2) and O(n3) time, respectively. In this sec-
tion, we discuss more sophisticated and asymptotically more efficient algorithms
for these problems, which are based on the divide-and-conquer technique.

The Closest-Pair Problem

Let P be a set of n > 1 points in the Cartesian plane. For the sake of simplicity,
we assume that the points are distinct. We can also assume that the points are
ordered in nondecreasing order of their x coordinate. (If they were not, we could
sort them first by an efficeint sorting algorithm such as mergesort.) It will also be
convenient to have the points sorted in a separate list in nondecreasing order of
the y coordinate; we will denote such a list Q.

If 2 ≤ n ≤ 3, the problem can be solved by the obvious brute-force algorithm.
If n > 3, we can divide the points into two subsets Pl and Pr of �n/2� and �n/2�
points, respectively, by drawing a vertical line through the median m of their x

coordinates so that �n/2� points lie to the left of or on the line itself, and �n/2�
points lie to the right of or on the line. Then we can solve the closest-pair problem
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FIGURE 5.7 (a) Idea of the divide-and-conquer algorithm for the closest-pair problem.
(b) Rectangle that may contain points closer than dmin to point p.

recursively for subsets Pl and Pr. Let dl and dr be the smallest distances between
pairs of points in Pl and Pr, respectively, and let d = min{dl, dr}.

Note that d is not necessarily the smallest distance between all the point pairs
because points of a closer pair can lie on the opposite sides of the separating
line. Therefore, as a step combining the solutions to the smaller subproblems, we
need to examine such points. Obviously, we can limit our attention to the points
inside the symmetric vertical strip of width 2d around the separating line, since
the distance between any other pair of points is at least d (Figure 5.7a).
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Let S be the list of points inside the strip of width 2d around the separating
line, obtained from Q and hence ordered in nondecreasing order of their y coor-
dinate. We will scan this list, updating the information about dmin, the minimum
distance seen so far, if we encounter a closer pair of points. Initially, dmin = d, and
subsequently dmin ≤ d. Let p(x, y) be a point on this list. For a point p′(x′, y′) to
have a chance to be closer to p than dmin, the point must follow p on list S and the
difference between their y coordinates must be less than dmin (why?). Geometri-
cally, this means that p′ must belong to the rectangle shown in Figure 5.7b. The
principal insight exploited by the algorithm is the observation that the rectangle
can contain just a few such points, because the points in each half (left and right)
of the rectangle must be at least distance d apart. It is easy to prove that the total
number of such points in the rectangle, including p, does not exceed eight (Prob-
lem 2 in this section’s exercises); a more careful analysis reduces this number to
six (see [Joh04, p. 695]). Thus, the algorithm can consider no more than five next
points following p on the list S, before moving up to the next point.

Here is pseudocode of the algorithm. We follow the advice given in Section 3.3
to avoid computing square roots inside the innermost loop of the algorithm.

ALGORITHM EfficientClosestPair(P, Q)

//Solves the closest-pair problem by divide-and-conquer
//Input: An array P of n ≥ 2 points in the Cartesian plane sorted in
// nondecreasing order of their x coordinates and an array Q of the
// same points sorted in nondecreasing order of the y coordinates
//Output: Euclidean distance between the closest pair of points
if n ≤ 3

return the minimal distance found by the brute-force algorithm
else

copy the first �n/2� points of P to array Pl

copy the same �n/2� points from Q to array Ql

copy the remaining �n/2� points of P to array Pr

copy the same �n/2� points from Q to array Qr

dl ← EfficientClosestPair(Pl, Ql)

dr ← EfficientClosestPair(Pr, Qr)

d ←min{dl, dr}
m ← P [�n/2� − 1].x
copy all the points of Q for which |x − m| < d into array S[0..num − 1]
dminsq ← d2

for i ← 0 to num − 2 do
k ← i + 1
while k ≤ num − 1 and (S[k].y − S[i].y)2 < dminsq

dminsq ← min((S[k].x − S[i].x)2+ (S[k].y − S[i].y)2, dminsq)

k ← k + 1
return sqrt(dminsq)
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The algorithm spends linear time both for dividing the problem into two
problems half the size and combining the obtained solutions. Therefore, assuming
as usual that n is a power of 2, we have the following recurrence for the running
time of the algorithm:

T (n) = 2T (n/2) + f (n),

where f (n) ∈ �(n). Applying the Master Theorem (with a = 2, b = 2, and d = 1),
we get T (n) ∈ �(n log n). The necessity to presort input points does not change
the overall efficiency class if sorting is done by a O(n log n) algorithm such as
mergesort. In fact, this is the best efficiency class one can achieve, because it has
been proved that any algorithm for this problem must be in �(n log n) under
some natural assumptions about operations an algorithm can perform (see [Pre85,
p. 188]).

Convex-Hull Problem

Let us revisit the convex-hull problem, introduced in Section 3.3: find the smallest
convex polygon that contains n given points in the plane. We consider here a
divide-and-conquer algorithm called quickhull because of its resemblance to
quicksort.

Let S be a set of n > 1 points p1(x1, y1), . . . , pn(xn, yn) in the Cartesian plane.
We assume that the points are sorted in nondecreasing order of their x coordinates,
with ties resolved by increasing order of the y coordinates of the points involved.
It is not difficult to prove the geometrically obvious fact that the leftmost point
p1 and the rightmost point pn are two distinct extreme points of the set’s convex
hull (Figure 5.8). Let −−−→

p1pn be the straight line through points p1 and pn directed
from p1 to pn. This line separates the points of S into two sets: S1 is the set of
points to the left of this line, and S2 is the set of points to the right of this line.
(We say that point q3 is to the left of the line −−−−→

q1q2 directed from point q1 to point
q2 if q1q2q3 forms a counterclockwise cycle. Later, we cite an analytical way to
check this condition, based on checking the sign of a determinant formed by the
coordinates of the three points.) The points of S on the line −−−→

p1pn, other than p1
and pn, cannot be extreme points of the convex hull and hence are excluded from
further consideration.

The boundary of the convex hull of S is made up of two polygonal chains:
an “upper” boundary and a “lower” boundary. The “upper” boundary, called the
upper hull, is a sequence of line segments with vertices at p1, some of the points
in S1 (if S1 is not empty) and pn. The “lower” boundary, called the lower hull, is
a sequence of line segments with vertices at p1, some of the points in S2 (if S2 is
not empty) and pn. The fact that the convex hull of the entire set S is composed
of the upper and lower hulls, which can be constructed independently and in a
similar fashion, is a very useful observation exploited by several algorithms for
this problem.

For concreteness, let us discuss how quickhull proceeds to construct the upper
hull; the lower hull can be constructed in the same manner. If S1 is empty, the
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p1

pn

FIGURE 5.8 Upper and lower hulls of a set of points.

p1

pmax

pn

FIGURE 5.9 The idea of quickhull.

upper hull is simply the line segment with the endpoints at p1 and pn. If S1 is not
empty, the algorithm identifies point pmax in S1, which is the farthest from the line
−−−→
p1pn (Figure 5.9). If there is a tie, the point that maximizes the angle � pmaxppn

can be selected. (Note that point pmax maximizes the area of the triangle with
two vertices at p1 and pn and the third one at some other point of S1.) Then the
algorithm identifies all the points of set S1 that are to the left of the line −−−→

p1pmax;
these are the points that will make up the set S1,1. The points of S1 to the left of
the line −−−−−−→

pmaxpn will make up the set S1,2. It is not difficult to prove the following:

pmax is a vertex of the upper hull.
The points inside �p1pmaxpn cannot be vertices of the upper hull (and hence
can be eliminated from further consideration).
There are no points to the left of both lines −−−→

p1pmax and −−−−−−→
pmaxpn.

Therefore, the algorithm can continue constructing the upper hulls of p1 ∪
S1,1 ∪ pmax and pmax ∪ S1,2 ∪ pn recursively and then simply concatenate them to
get the upper hull of the entire set p1 ∪ S1 ∪ pn.
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Now we have to figure out how the algorithm’s geometric operations can be
actually implemented. Fortunately, we can take advantage of the following very
useful fact from analytical geometry: if q1(x1, y1), q2(x2, y2), and q3(x3, y3) are
three arbitrary points in the Cartesian plane, then the area of the triangle �q1q2q3
is equal to one-half of the magnitude of the determinant∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣= x1y2 + x3y1 + x2y3 − x3y2 − x2y1 − x1y3,

while the sign of this expression is positive if and only if the point q3 = (x3, y3) is to
the left of the line −−−→

q
1
q

2
. Using this formula, we can check in constant time whether

a point lies to the left of the line determined by two other points as well as find
the distance from the point to the line.

Quickhull has the same �(n2) worst-case efficiency as quicksort (Problem 9
in this section’s exercises). In the average case, however, we should expect a
much better performance. First, the algorithm should benefit from the quicksort-
like savings from the on-average balanced split of the problem into two smaller
subproblems. Second, a significant fraction of the points—namely, those inside
�p1pmaxpn (see Figure 5.9)—are eliminated from further processing. Under a
natural assumption that points given are chosen randomly from a uniform dis-
tribution over some convex region (e.g., a circle or a rectangle), the average-case
efficiency of quickhull turns out to be linear [Ove80].

Exercises 5.5

1. a. For the one-dimensional version of the closest-pair problem, i.e., for the
problem of finding two closest numbers among a given set of n real num-
bers, design an algorithm that is directly based on the divide-and-conquer
technique and determine its efficiency class.

b. Is it a good algorithm for this problem?

2. Prove that the divide-and-conquer algorithm for the closest-pair problem
examines, for every point p in the vertical strip (see Figures 5.7a and 5.7b), no
more than seven other points that can be closer to p than dmin, the minimum
distance between two points encountered by the algorithm up to that point.

3. Consider the version of the divide-and-conquer two-dimensional closest-pair
algorithm in which, instead of presorting input set P , we simply sort each of
the two sets Pl and Pr in nondecreasing order of their y coordinates on each
recursive call. Assuming that sorting is done by mergesort, set up a recurrence
relation for the running time in the worst case and solve it for n = 2k.

4. Implement the divide-and-conquer closest-pair algorithm, outlined in this
section, in the language of your choice.
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5. Find on the Web a visualization of an algorithm for the closest-pair problem.
What algorithm does this visualization represent?

6. The Voronoi polygon for a point p of a set S of points in the plane is defined
to be the perimeter of the set of all points in the plane closer to p than to any
other point in S. The union of all the Voronoi polygons of the points in S is
called the Voronoi diagram of S.

a. What is the Voronoi diagram for a set of three points?

b. Find a visualization of an algorithm for generating the Voronoi diagram
on the Web and study a few examples of such diagrams. Based on your
observations, can you tell how the solution to the previous question is
generalized to the general case?

7. Explain how one can find point pmax in the quickhull algorithm analytically.

8. What is the best-case efficiency of quickhull?

9. Give a specific example of inputs that make quickhull run in quadratic time.

10. Implement quickhull in the language of your choice.

11. Creating decagons There are 1000 points in the plane, no three of them
on the same line. Devise an algorithm to construct 100 decagons with their
vertices at these points. The decagons need not be convex, but each of them
has to be simple, i.e., its boundary should not cross itself, and no two decagons
may have a common point.

12. Shortest path around There is a fenced area in the two-dimensional Eu-
clidean plane in the shape of a convex polygon with vertices at points
p1(x1, y1), p2(x2, y2), . . . , pn(xn, yn) (not necessarily in this order). There are
two more points, a(xa, ya) and b(xb, yb) such that xa < min{x1, x2, . . . , xn} and
xb > max{x1, x2, . . . , xn}. Design a reasonably efficient algorithm for comput-
ing the length of the shortest path between a and b. [ORo98]

SUMMARY

Divide-and-conquer is a general algorithm design technique that solves a
problem by dividing it into several smaller subproblems of the same type
(ideally, of about equal size), solving each of them recursively, and then
combining their solutions to get a solution to the original problem. Many
efficient algorithms are based on this technique, although it can be both
inapplicable and inferior to simpler algorithmic solutions.

Running time T (n) of many divide-and-conquer algorithms satisfies the
recurrence T (n) = aT (n/b) + f (n). The Master Theorem establishes the order
of growth of its solutions.

Mergesort is a divide-and-conquer sorting algorithm. It works by dividing an
input array into two halves, sorting them recursively, and then merging the two
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sorted halves to get the original array sorted. The algorithm’s time efficiency
is in �(n log n) in all cases, with the number of key comparisons being very
close to the theoretical minimum. Its principal drawback is a significant extra
storage requirement.

Quicksort is a divide-and-conquer sorting algorithm that works by partition-
ing its input elements according to their value relative to some preselected
element. Quicksort is noted for its superior efficiency among n log n al-
gorithms for sorting randomly ordered arrays but also for the quadratic
worst-case efficiency.

The classic traversals of a binary tree—preorder, inorder, and postorder—
and similar algorithms that require recursive processing of both left and right
subtrees can be considered examples of the divide-and-conquer technique.
Their analysis is helped by replacing all the empty subtrees of a given tree by
special external nodes.

There is a divide-and-conquer algorithm for multiplying two n-digit integers
that requires about n1.585 one-digit multiplications.

Strassen’s algorithm needs only seven multiplications to multiply two 2 × 2
matrices. By exploiting the divide-and-conquer technique, this algorithm can
multiply two n × n matrices with about n2.807 multiplications.

The divide-and-conquer technique can be successfully applied to two impor-
tant problems of computational geometry: the closest-pair problem and the
convex-hull problem.
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6
Transform-and-Conquer

That’s the secret to life . . . replace one worry with another.
—Charles M. Schulz (1922–2000), American cartoonist,

the creator of Peanuts

This chapter deals with a group of design methods that are based on the idea
of transformation. We call this general technique transform-and-conquer

because these methods work as two-stage procedures. First, in the transformation
stage, the problem’s instance is modified to be, for one reason or another, more
amenable to solution. Then, in the second or conquering stage, it is solved.

There are three major variations of this idea that differ by what we transform
a given instance to (Figure 6.1):

Transformation to a simpler or more convenient instance of the same
problem—we call it instance simplification.
Transformation to a different representation of the same instance—we call it
representation change.
Transformation to an instance of a different problem for which an algorithm
is already available—we call it problem reduction.

In the first three sections of this chapter, we encounter examples of the
instance-simplification variety. Section 6.1 deals with the simple but fruitful idea
of presorting. Many algorithmic problems are easier to solve if their input is
sorted. Of course, the benefits of sorting should more than compensate for the

problem's
instance

solution

simpler instance
or

another representation
or

another  problem's instance

FIGURE 6.1 Transform-and-conquer strategy.
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time spent on it; otherwise, we would be better off dealing with an unsorted
input directly. Section 6.2 introduces one of the most important algorithms in
applied mathematics: Gaussian elimination. This algorithm solves a system of
linear equations by first transforming it to another system with a special property
that makes finding a solution quite easy. In Section 6.3, the ideas of instance
simplification and representation change are applied to search trees. The results
are AVL trees and multiway balanced search trees; of the latter we consider the
simplest case, 2-3 trees.

Section 6.4 presents heaps and heapsort. Even if you are already familiar
with this important data structure and its application to sorting, you can still
benefit from looking at them in this new light of transform-and-conquer design.
In Section 6.5, we discuss Horner’s rule, a remarkable algorithm for evaluating
polynomials. If there were an Algorithm Hall of Fame, Horner’s rule would be a
serious candidate for induction based on the algorithm’s elegance and efficiency.
We also consider there two interesting algorithms for the exponentiation problem,
both based on the representation-change idea.

The chapter concludes with a review of several applications of the third variety
of transform-and-conquer: problem reduction. This variety should be considered
the most radical of the three: one problem is reduced to another, i.e., transformed
into an entirely different problem. This is a very powerful idea, and it is extensively
used in the complexity theory (Chapter 11). Its application to designing practical
algorithms is not trivial, however. First, we need to identify a new problem into
which the given problem should be transformed. Then we must make sure that
the transformation algorithm followed by the algorithm for solving the new prob-
lem is time efficient compared to other algorithmic alternatives. Among several
examples, we discuss an important special case of mathematical modeling, or
expressing a problem in terms of purely mathematical objects such as variables,
functions, and equations.

6.1 Presorting

Presorting is an old idea in computer science. In fact, interest in sorting algorithms
is due, to a significant degree, to the fact that many questions about a list are
easier to answer if the list is sorted. Obviously, the time efficiency of algorithms
that involve sorting may depend on the efficiency of the sorting algorithm being
used. For the sake of simplicity, we assume throughout this section that lists are
implemented as arrays, because some sorting algorithms are easier to implement
for the array representation.

So far, we have discussed three elementary sorting algorithms—selection sort,
bubble sort, and insertion sort—that are quadratic in the worst and average cases,
and two advanced algorithms—mergesort, which is always in �(n log n), and
quicksort, whose efficiency is also �(n log n) in the average case but is quadratic in
the worst case. Are there faster sorting algorithms? As we have already stated in
Section 1.3 (see also Section 11.2), no general comparison-based sorting algorithm
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can have a better efficiency than n log n in the worst case, and the same result holds
for the average-case efficiency.1

Following are three examples that illustrate the idea of presorting. More
examples can be found in this section’s exercises.

EXAMPLE 1 Checking element uniqueness in an array If this element unique-
ness problem looks familiar to you, it should; we considered a brute-force algo-
rithm for the problem in Section 2.3 (see Example 2). The brute-force algorithm
compared pairs of the array’s elements until either two equal elements were found
or no more pairs were left. Its worst-case efficiency was in �(n2).

Alternatively, we can sort the array first and then check only its consecutive
elements: if the array has equal elements, a pair of them must be next to each
other, and vice versa.

ALGORITHM PresortElementUniqueness(A[0..n − 1])

//Solves the element uniqueness problem by sorting the array first
//Input: An array A[0..n − 1] of orderable elements
//Output: Returns “true” if A has no equal elements, “false” otherwise
sort the array A

for i ← 0 to n − 2 do
if A[i] = A[i + 1] return false

return true

The running time of this algorithm is the sum of the time spent on sorting
and the time spent on checking consecutive elements. Since the former requires
at least n log n comparisons and the latter needs no more than n − 1 comparisons,
it is the sorting part that will determine the overall efficiency of the algorithm. So,
if we use a quadratic sorting algorithm here, the entire algorithm will not be more
efficient than the brute-force one. But if we use a good sorting algorithm, such
as mergesort, with worst-case efficiency in �(n log n), the worst-case efficiency of
the entire presorting-based algorithm will be also in �(n log n):

T (n) = Tsort(n) + Tscan(n) ∈ �(n log n) + �(n) = �(n log n).

EXAMPLE 2 Computing a mode A mode is a value that occurs most often in a
given list of numbers. For example, for 5, 1, 5, 7, 6, 5, 7, the mode is 5. (If several
different values occur most often, any of them can be considered a mode.) The
brute-force approach to computing a mode would scan the list and compute the
frequencies of all its distinct values, then find the value with the largest frequency.

1. Sorting algorithms called radix sorts are linear but in terms of the total number of input bits. These
algorithms work by comparing individual bits or pieces of keys rather than keys in their entirety.
Although the running time of these algorithms is proportional to the number of input bits, they are
still essentially n log n algorithms because the number of bits per key must be at least log2 n in order
to accommodate n distinct keys of input.
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In order to implement this idea, we can store the values already encountered,
along with their frequencies, in a separate list. On each iteration, the ith element
of the original list is compared with the values already encountered by traversing
this auxiliary list. If a matching value is found, its frequency is incremented;
otherwise, the current element is added to the list of distinct values seen so far
with a frequency of 1.

It is not difficult to see that the worst-case input for this algorithm is a list with
no equal elements. For such a list, its ith element is compared with i − 1 elements
of the auxiliary list of distinct values seen so far before being added to the list with
a frequency of 1. As a result, the worst-case number of comparisons made by this
algorithm in creating the frequency list is

C(n) =
n∑

i=1

(i − 1) = 0 + 1 + . . . + (n − 1) = (n − 1)n
2

∈ �(n2).

The additional n − 1 comparisons needed to find the largest frequency in the aux-
iliary list do not change the quadratic worst-case efficiency class of the algorithm.

As an alternative, let us first sort the input. Then all equal values will be
adjacent to each other. To compute the mode, all we need to do is to find the
longest run of adjacent equal values in the sorted array.

ALGORITHM PresortMode(A[0..n − 1])

//Computes the mode of an array by sorting it first
//Input: An array A[0..n − 1] of orderable elements
//Output: The array’s mode
sort the array A

i ← 0 //current run begins at position i

modef requency ← 0 //highest frequency seen so far
while i ≤ n − 1 do

runlength ← 1; runvalue ← A[i]
while i + runlength ≤ n − 1 and A[i + runlength] = runvalue

runlength ← runlength + 1
if runlength > modef requency

modef requency ← runlength; modevalue ← runvalue

i ← i + runlength

return modevalue

The analysis here is similar to the analysis of Example 1: the running time of
the algorithm will be dominated by the time spent on sorting since the remainder
of the algorithm takes linear time (why?). Consequently, with an n log n sort, this
method’s worst-case efficiency will be in a better asymptotic class than the worst-
case efficiency of the brute-force algorithm.
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EXAMPLE 3 Searching problem Consider the problem of searching for a given
value v in a given array of n sortable items. The brute-force solution here is
sequential search (Section 3.1), which needs n comparisons in the worst case. If
the array is sorted first, we can then apply binary search, which requires only
�log2 n� + 1 comparisons in the worst case. Assuming the most efficient n log n

sort, the total running time of such a searching algorithm in the worst case will be

T (n) = Tsort(n) + Tsearch(n) = �(n log n) + �(log n) = �(n log n),

which is inferior to sequential search. The same will also be true for the average-
case efficiency. Of course, if we are to search in the same list more than once, the
time spent on sorting might well be justified. (Problem 4 in this section’s exercises
asks to estimate the minimum number of searches needed to justify presorting.)

Before we finish our discussion of presorting, we should mention that many,
if not most, geometric algorithms dealing with sets of points use presorting in
one way or another. Points can be sorted by one of their coordinates, or by
their distance from a particular line, or by some angle, and so on. For example,
presorting was used in the divide-and-conquer algorithms for the closest-pair
problem and for the convex-hull problem, which were discussed in Section 5.5.

Further, some problems for directed acyclic graphs can be solved more easily
after topologically sorting the digraph in question. The problems of finding the
longest and shortest paths in such digraphs (see the exercises for Sections 8.1
and 9.3) illustrate this point.

Finally, most algorithms based on the greedy technique, which is the subject of
Chapter 9, require presorting of their inputs as an intrinsic part of their operations.

Exercises 6.1

1. Consider the problem of finding the distance between the two closest numbers
in an array of n numbers. (The distance between two numbers x and y is
computed as |x − y|.)
a. Design a presorting-based algorithm for solving this problem and deter-

mine its efficiency class.

b. Compare the efficiency of this algorithm with that of the brute-force algo-
rithm (see Problem 9 in Exercises 1.2).

2. Let A = {a1, . . . , an} and B = {b1, . . . , bm} be two sets of numbers. Consider
the problem of finding their intersection, i.e., the set C of all the numbers that
are in both A and B.
a. Design a brute-force algorithm for solving this problem and determine its

efficiency class.

b. Design a presorting-based algorithm for solving this problem and deter-
mine its efficiency class.
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3. Consider the problem of finding the smallest and largest elements in an array
of n numbers.
a. Design a presorting-based algorithm for solving this problem and deter-

mine its efficiency class.

b. Compare the efficiency of the three algorithms: (i) the brute-force algo-
rithm, (ii) this presorting-based algorithm, and (iii) the divide-and-conquer
algorithm (see Problem 2 in Exercises 5.1).

4. Estimate how many searches will be needed to justify time spent on presorting
an array of 103 elements if sorting is done by mergesort and searching is done
by binary search. (You may assume that all searches are for elements known
to be in the array.) What about an array of 106 elements?

5. To sort or not to sort? Design a reasonably efficient algorithm for solving each
of the following problems and determine its efficiency class.
a. You are given n telephone bills and m checks sent to pay the bills (n ≥ m).

Assuming that telephone numbers are written on the checks, find out who
failed to pay. (For simplicity, you may also assume that only one check is
written for a particular bill and that it covers the bill in full.)

b. You have a file of n student records indicating each student’s number,
name, home address, and date of birth. Find out the number of students
from each of the 50 U.S. states.

6. Given a set of n ≥ 3 points in the Cartesian plane, connect them in a simple
polygon, i.e., a closed path through all the points so that its line segments
(the polygon’s edges) do not intersect (except for neighboring edges at their
common vertex). For example,

P3 P3

P2 P2

P6
P1

P4
P5

P4

P6
P1

P5

a. Does the problem always have a solution? Does it always have a unique
solution?

b. Design a reasonably efficient algorithm for solving this problem and indi-
cate its efficiency class.

7. You have an array of n real numbers and another integer s. Find out whether
the array contains two elements whose sum is s. (For example, for the array 5,
9, 1, 3 and s = 6, the answer is yes, but for the same array and s = 7, the answer
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is no.) Design an algorithm for this problem with a better than quadratic time
efficiency.

8. You have a list of n open intervals (a1, b1), (a2, b2), . . . , (an, bn) on the real line.
(An open interval (a, b) comprises all the points strictly between its endpoints
a and b, i.e., (a, b) = {x| a < x < b}.) Find the maximum number of these
intervals that have a common point. For example, for the intervals (1, 4),
(0, 3), (−1.5, 2), (3.6, 5), this maximum number is 3. Design an algorithm
for this problem with a better than quadratic time efficiency.

9. Number placement Given a list of n distinct integers and a sequence of n

boxes with pre-set inequality signs inserted between them, design an algo-
rithm that places the numbers into the boxes to satisfy those inequalities. For
example, the numbers 4, 6, 3, 1, 8 can be placed in the five boxes as shown
below:

1 < 8 > 3 < 4 < 6

10. Maxima search
a. A point (xi, yi) in the Cartesian plane is said to be dominated by point

(xj , yj) if xi ≤ xj and yi ≤ yj with at least one of the two inequalities being
strict. Given a set of n points, one of them is said to be a maximum of the
set if it is not dominated by any other point in the set. For example, in the
figure below, all the maximum points of the set of 10 points are circled.

y

x

Design an efficient algorithm for finding all the maximum points of a given
set of n points in the Cartesian plane. What is the time efficiency class of
your algorithm?

b. Give a few real-world applications of this algorithm.
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11. Anagram detection
a. Design an efficient algorithm for finding all sets of anagrams in a large file

such as a dictionary of English words [Ben00]. For example, eat, ate, and
tea belong to one such set.

b. Write a program implementing the algorithm.

6.2 Gaussian Elimination

You are certainly familiar with systems of two linear equations in two unknowns:

a11x + a12y = b1

a21x + a22y = b2.

Recall that unless the coefficients of one equation are proportional to the coef-
ficients of the other, the system has a unique solution. The standard method for
finding this solution is to use either equation to express one of the variables as a
function of the other and then substitute the result into the other equation, yield-
ing a linear equation whose solution is then used to find the value of the second
variable.

In many applications, we need to solve a system of n equations in n

unknowns:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

an1x1 + an2x2 + . . . + annxn = bn

where n is a large number. Theoretically, we can solve such a system by general-
izing the substitution method for solving systems of two linear equations (what
general design technique would such a method be based upon?); however, the
resulting algorithm would be extremely cumbersome.

Fortunately, there is a much more elegant algorithm for solving systems of
linear equations called Gaussian elimination.2 The idea of Gaussian elimination
is to transform a system of n linear equations in n unknowns to an equivalent
system (i.e., a system with the same solution as the original one) with an upper-
triangular coefficient matrix, a matrix with all zeros below its main diagonal:

2. The method is named after Carl Friedrich Gauss (1777–1855), who—like other giants in the history of
mathematics such as Isaac Newton and Leonhard Euler—made numerous fundamental contributions
to both theoretical and computational mathematics. The method was known to the Chinese 1800 years
before the Europeans rediscovered it.
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a11x1 + a12x2 + . . . + a1nxn = b1 a′
11x1 + a′

12x2 + . . . + a′
1nxn = b′

1

a21x1 + a22x2 + . . . + a2nxn = b2 a′
22x2 + . . . + a′

2n
xn = b′

2... �⇒ ...
an1x1 + an2x2 + . . . + annxn = bn a′

nn
xn = b′

n
.

In matrix notations, we can write this as

Ax = b �⇒ A′x = b′,

where

A =

⎡
⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n...
an1 an2 . . . ann

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

b1
b2...
bn

⎤
⎥⎥⎦, A′ =

⎡
⎢⎢⎣

a′
11 a′

12 . . . a′
1n

0 a′
22 . . . a′

2n...
0 0 . . . a′

nn

⎤
⎥⎥⎦, b =

⎡
⎢⎢⎣

b′
1

b′
2...

b′
n

⎤
⎥⎥⎦ .

(We added primes to the matrix elements and right-hand sides of the new system
to stress the point that their values differ from their counterparts in the original
system.)

Why is the system with the upper-triangular coefficient matrix better than
a system with an arbitrary coefficient matrix? Because we can easily solve the
system with an upper-triangular coefficient matrix by back substitutions as follows.
First, we can immediately find the value of xn from the last equation; then we can
substitute this value into the next to last equation to get xn−1, and so on, until we
substitute the known values of the last n − 1 variables into the first equation, from
which we find the value of x1.

So how can we get from a system with an arbitrary coefficient matrix A to an
equivalent system with an upper-triangular coefficient matrix A′? We can do that
through a series of the so-called elementary operations:

exchanging two equations of the system
replacing an equation with its nonzero multiple
replacing an equation with a sum or difference of this equation and some
multiple of another equation

Since no elementary operation can change a solution to a system, any system that
is obtained through a series of such operations will have the same solution as the
original one.

Let us see how we can get to a system with an upper-triangular matrix. First,
we use a11 as a pivot to make all x1 coefficients zeros in the equations below
the first one. Specifically, we replace the second equation with the difference
between it and the first equation multiplied by a21/a11 to get an equation with
a zero coefficient for x1. Doing the same for the third, fourth, and finally nth
equation—with the multiples a31/a11, a41/a11, . . . , an1/a11 of the first equation,

respectively—makes all the coefficients of x1 below the first equation zero. Then
we get rid of all the coefficients of x2 by subtracting an appropriate multiple of the
second equation from each of the equations below the second one. Repeating this
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elimination for each of the first n − 1 variables ultimately yields a system with an
upper-triangular coefficient matrix.

Before we look at an example of Gaussian elimination, let us note that we
can operate with just a system’s coefficient matrix augmented, as its (n + 1)st
column, with the equations’ right-hand side values. In other words, we need to
write explicitly neither the variable names nor the plus and equality signs.

EXAMPLE 1 Solve the system by Gaussian elimination.

2x1 − x2 + x3 = 1

4x1 + x2 − x3 = 5

x1 + x2 + x3 = 0.

⎡
⎣ 2 −1 1 1

4 1 −1 5

1 1 1 0

⎤
⎦ row 2 − 4

2 row 1
row 3 − 1

2 row 1⎡
⎣ 2 −1 1 1

0 3 −3 3
0 3

2
1
2 − 1

2

⎤
⎦

row 3 − 1
2 row 2⎡

⎣ 2 −1 1 1
0 3 −3 3
0 0 2 −2

⎤
⎦

Now we can obtain the solution by back substitutions:

x3 = (−2)/2 = −1, x2 = (3 − (−3)x3)/3 = 0, and x1 = (1 − x3 − (−1)x2)/2 = 1.

Here is pseudocode of the first stage, called forward elimination, of the
algorithm.

ALGORITHM ForwardElimination(A[1..n, 1..n], b[1..n])

//Applies Gaussian elimination to matrix A of a system’s coefficients,
//augmented with vector b of the system’s right-hand side values
//Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
//Output: An equivalent upper-triangular matrix in place of A with the
//corresponding right-hand side values in the (n + 1)st column
for i ← 1 to n do A[i, n + 1] ← b[i] //augments the matrix
for i ← 1 to n − 1 do

for j ← i + 1 to n do
for k ← i to n + 1 do

A[j, k] ← A[j, k] − A[i, k] ∗ A[j, i] / A[i, i]
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There are two important observations to make about this pseudocode. First, it
is not always correct: if A[i, i] = 0, we cannot divide by it and hence cannot use the
ith row as a pivot for the ith iteration of the algorithm. In such a case, we should
take advantage of the first elementary operation and exchange the ith row with
some row below it that has a nonzero coefficient in the ith column. (If the system
has a unique solution, which is the normal case for systems under consideration,
such a row must exist.)

Since we have to be prepared for the possibility of row exchanges anyway, we
can take care of another potential difficulty: the possibility that A[i, i] is so small
and consequently the scaling factor A[j, i]/A[i, i] so large that the new value of
A[j, k]might become distorted by a round-off error caused by a subtraction of two
numbers of greatly different magnitudes.3 To avoid this problem, we can always
look for a row with the largest absolute value of the coefficient in the ith column,
exchange it with the ith row, and then use the new A[i, i] as the ith iteration’s
pivot. This modification, called partial pivoting, guarantees that the magnitude
of the scaling factor will never exceed 1.

The second observation is the fact that the innermost loop is written with a
glaring inefficiency. Can you find it before checking the following pseudocode,
which both incorporates partial pivoting and eliminates this inefficiency?

ALGORITHM BetterForwardElimination(A[1..n, 1..n], b[1..n])

//Implements Gaussian elimination with partial pivoting
//Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
//Output: An equivalent upper-triangular matrix in place of A and the
//corresponding right-hand side values in place of the (n + 1)st column
for i ← 1 to n do A[i, n + 1] ← b[i] //appends b to A as the last column
for i ← 1 to n − 1 do

pivotrow ← i

for j ← i + 1 to n do
if |A[j, i]| > |A[pivotrow, i]| pivotrow ← j

for k ← i to n + 1 do
swap(A[i, k], A[pivotrow, k])

for j ← i + 1 to n do
temp ← A[j, i] / A[i, i]
for k ← i to n + 1 do

A[j, k] ← A[j, k] − A[i, k] ∗ temp

Let us find the time efficiency of this algorithm. Its innermost loop consists of
a single line,

A[j, k] ← A[j, k] − A[i, k] ∗ temp,

3. We discuss round-off errors in more detail in Section 11.4.
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which contains one multiplication and one subtraction. On most computers, multi-
plication is unquestionably more expensive than addition/subtraction, and hence
it is multiplication that is usually quoted as the algorithm’s basic operation.4 The
standard summation formulas and rules reviewed in Section 2.3 (see also Appen-
dix A) are very helpful in the following derivation:

C(n) =
n−1∑
i=1

n∑
j=i+1

n+1∑
k=i

1 =
n−1∑
i=1

n∑
j=i+1

(n + 1 − i + 1) =
n−1∑
i=1

n∑
j=i+1

(n + 2 − i)

=
n−1∑
i=1

(n + 2 − i)(n − (i + 1) + 1) =
n−1∑
i=1

(n + 2 − i)(n − i)

= (n + 1)(n − 1) + n(n − 2) + . . . + 3 . 1

=
n−1∑
j=1

(j + 2)j =
n−1∑
j=1

j2 +
n−1∑
j=1

2j = (n − 1)n(2n − 1)
6

+ 2
(n − 1)n

2

= n(n − 1)(2n + 5)
6

≈ 1
3
n3 ∈ �(n3).

Since the second (back substitution) stage of Gaussian elimination is in �(n2),

as you are asked to show in the exercises, the running time is dominated by the
cubic elimination stage, making the entire algorithm cubic as well.

Theoretically, Gaussian elimination always either yields an exact solution to a
system of linear equations when the system has a unique solution or discovers that
no such solution exists. In the latter case, the system will have either no solutions
or infinitely many of them. In practice, solving systems of significant size on a
computer by this method is not nearly so straightforward as the method would
lead us to believe. The principal difficulty lies in preventing an accumulation of
round-off errors (see Section 11.4). Consult textbooks on numerical analysis that
analyze this and other implementation issues in great detail.

LU Decomposition

Gaussian elimination has an interesting and very useful byproduct called LU de-
composition of the coefficient matrix. In fact, modern commercial implementa-
tions of Gaussian elimination are based on such a decomposition rather than on
the basic algorithm outlined above.

EXAMPLE Let us return to the example in the beginning of this section, where
we applied Gaussian elimination to the matrix

4. As we mentioned in Section 2.1, on some computers multiplication is not necessarily more expensive
than addition/subtraction. For this algorithm, this point is moot since we can simply count the number
of times the innermost loop is executed, which is, of course, exactly the same number as the number
of multiplications and the number of subtractions there.
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A =
⎡
⎣ 2 −1 1

4 1 −1
1 1 1

⎤
⎦ .

Consider the lower-triangular matrix L made up of 1’s on its main diagonal and
the row multiples used in the forward elimination process

L =
⎡
⎣ 1 0 0

2 1 0
1
2

1
2 1

⎤
⎦

and the upper-triangular matrix U that was the result of this elimination

U =
⎡
⎣ 2 −1 1

0 3 −3
0 0 2

⎤
⎦ .

It turns out that the product LU of these matrices is equal to matrix A. (For this
particular pair of L and U , you can verify this fact by direct multiplication, but as
a general proposition, it needs, of course, a proof, which we omit here.)

Therefore, solving the system Ax = b is equivalent to solving the system
LUx = b. The latter system can be solved as follows. Denote y = Ux, then Ly = b.

Solve the system Ly = b first, which is easy to do because L is a lower-triangular
matrix; then solve the system Ux = y, with the upper-triangular matrix U , to find
x. Thus, for the system at the beginning of this section, we first solve Ly = b:⎡

⎣ 1 0 0
2 1 0
1
2

1
2 1

⎤
⎦
⎡
⎣ y1

y2
y3

⎤
⎦=

⎡
⎣ 1

5
0

⎤
⎦ .

Its solution is

y1 = 1, y2 = 5 − 2y1 = 3, y3 = 0 − 1
2
y1 − 1

2
y2 = −2.

Solving Ux = y means solving⎡
⎣ 2 −1 1

0 3 −3
0 0 2

⎤
⎦
⎡
⎣ x1

x2
x3

⎤
⎦=

⎡
⎣ 1

3
−2

⎤
⎦ ,

and the solution is

x3 = (−2)/2 = −1, x2 = (3 − (−3)x3)/3 = 0, x1 = (1 − x3 − (−1)x2)/2 = 1.

Note that once we have the LU decomposition of matrix A, we can solve
systems Ax = b with as many right-hand side vectors b as we want to, one at a time.
This is a distinct advantage over the classic Gaussian elimination discussed earlier.
Also note that the LU decomposition does not actually require extra memory,
because we can store the nonzero part of U in the upper-triangular part of A
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(including the main diagonal) and store the nontrivial part of L below the main
diagonal of A.

Computing a Matrix Inverse

Gaussian elimination is a very useful algorithm that tackles one of the most
important problems of applied mathematics: solving systems of linear equations.
In fact, Gaussian elimination can also be applied to several other problems of
linear algebra, such as computing a matrix inverse. The inverse of an n × n matrix
A is an n × n matrix, denoted A−1, such that

AA−1 = I,

where I is the n × n identity matrix (the matrix with all zero elements except
the main diagonal elements, which are all ones). Not every square matrix has
an inverse, but when it exists, the inverse is unique. If a matrix A does not have
an inverse, it is called singular. One can prove that a matrix is singular if and
only if one of its rows is a linear combination (a sum of some multiples) of the
other rows. A convenient way to check whether a matrix is nonsingular is to apply
Gaussian elimination: if it yields an upper-triangular matrix with no zeros on the
main diagonal, the matrix is nonsingular; otherwise, it is singular. So being singular
is a very special situation, and most square matrices do have their inverses.

Theoretically, inverse matrices are very important because they play the role
of reciprocals in matrix algebra, overcoming the absence of the explicit division
operation for matrices. For example, in a complete analogy with a linear equation
in one unknown ax = b whose solution can be written as x = a−1b (if a is not
zero), we can express a solution to a system of n equations in n unknowns Ax = b

as x = A−1b (if A is nonsingular) where b is, of course, a vector, not a number.
According to the definition of the inverse matrix for a nonsingular n × n

matrix A, to compute it we need to find n2 numbers xij , 1 ≤ i, j ≤ n, such that⎡
⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n...
an1 an2 . . . ann

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n...
xn1 xn2 . . . xnn

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...
0 0 . . . 1

⎤
⎥⎥⎦ .

We can find the unknowns by solving n systems of linear equations that have the
same coefficient matrix A, the vector of unknowns xj is the j th column of the
inverse, and the right-hand side vector ej is the j th column of the identity matrix
(1 ≤ j ≤ n):

Axj = ej .

We can solve these systems by applying Gaussian elimination to matrix A aug-
mented by the n × n identity matrix. Better yet, we can use forward elimina-
tion to find the LU decomposition of A and then solve the systems LUxj = ej ,

j = 1, . . . , n, as explained earlier.
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Computing a Determinant

Another problem that can be solved by Gaussian elimination is computing a
determinant. The determinant of an n × n matrix A, denoted det A or |A|, is a
number whose value can be defined recursively as follows. If n = 1, i.e., if A consists
of a single element a11, det A is equal to a11; for n > 1, det A is computed by the
recursive formula

det A =
n∑

j=1

sja1j det Aj,

where sj is +1 if j is odd and −1 if j is even, a1j is the element in row 1 and column
j , and Aj is the (n − 1) × (n − 1) matrix obtained from matrix A by deleting its
row 1 and column j .

In particular, for a 2 × 2 matrix, the definition implies a formula that is easy
to remember:

det
[

a11 a12
a21 a22

]
= a11 det [a22] − a12 det [a21] = a11a22 − a12a21.

In other words, the determinant of a 2 × 2 matrix is simply equal to the difference
between the products of its diagonal elements.

For a 3 × 3 matrix, we get

det

⎡
⎣ a11 a12 a13

a21 a22 a23
a31 a32 a33

⎤
⎦

= a11 det
[

a22 a23
a32 a33

]
− a12 det

[
a21 a23
a31 a33

]
+ a13 det

[
a21 a22
a31 a32

]
= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31.

Incidentally, this formula is very handy in a variety of applications. In particular,
we used it twice already in Section 5.5 as a part of the quickhull algorithm.

But what if we need to compute a determinant of a large matrix? Although
this is a task that is rarely needed in practice, it is worth discussing nevertheless.
Using the recursive definition can be of little help because it implies computing the
sum of n!terms. Here, Gaussian elimination comes to the rescue again. The central
point is the fact that the determinant of an upper-triangular matrix is equal to the
product of elements on its main diagonal, and it is easy to see how elementary
operations employed by the elimination algorithm influence the determinant’s
value. (Basically, it either remains unchanged or changes a sign or is multiplied by
the constant used by the elimination algorithm.) As a result, we can compute the
determinant of an n × n matrix in cubic time.

Determinants play an important role in the theory of systems of linear equa-
tions. Specifically, a system of n linear equations in n unknowns Ax = b has a
unique solution if and only if the determinant of its coefficient matrix det A is
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not equal to zero. Moreover, this solution can be found by the formulas called
Cramer’s rule,

x1 = det A1

det A
, . . . , xj = det Aj

det A
, . . . , xn = det An

det A
,

where det Aj is the determinant of the matrix obtained by replacing the j th
column of A by the column b. You are asked to investigate in the exercises whether
using Cramer’s rule is a good algorithm for solving systems of linear equations.

Exercises 6.2

1. Solve the following system by Gaussian elimination:

x1 + x2 + x3 = 2

2x1 + x2 + x3 = 3

x1 − x2 + 3x3 = 8.

2. a. Solve the system of the previous question by the LU decomposition
method.

b. From the standpoint of general algorithm design techniques, how would
you classify the LU decomposition method?

3. Solve the system of Problem 1 by computing the inverse of its coefficient
matrix and then multiplying it by the vector on the right-hand side.

4. Would it be correct to get the efficiency class of the forward elimination stage
of Gaussian elimination as follows?

C(n) =
n−1∑
i=1

n∑
j=i+1

n+1∑
k=i

1 =
n−1∑
i=1

(n + 2 − i)(n − i)

=
n−1∑
i=1

[(n + 2)n − i(2n + 2) + i2]

=
n−1∑
i=1

(n + 2)n −
n−1∑
i=1

(2n + 2)i +
n−1∑
i=1

i2.

Since s1(n) = ∑n−1
i=1 (n + 2)n ∈ �(n3), s2(n) = ∑n−1

i=1 (2n + 2)i ∈ �(n3), and
s3(n) =∑n−1

i=1 i2 ∈ �(n3), s1(n) − s2(n) + s3(n) ∈ �(n3).

5. Write pseudocode for the back-substitution stage of Gaussian elimination and
show that its running time is in �(n2).

6. Assuming that division of two numbers takes three times longer than their
multiplication, estimate how much faster BetterForwardElimination is than
ForwardElimination. (Of course, you should also assume that a compiler is
not going to eliminate the inefficiency in ForwardElimination.)
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7. a. Give an example of a system of two linear equations in two unknowns that
has a unique solution and solve it by Gaussian elimination.

b. Give an example of a system of two linear equations in two unknowns that
has no solution and apply Gaussian elimination to it.

c. Give an example of a system of two linear equations in two unknowns that
has infinitely many solutions and apply Gaussian elimination to it.

8. The Gauss-Jordan elimination method differs from Gaussian elimination in
that the elements above the main diagonal of the coefficient matrix are made
zero at the same time and by the same use of a pivot row as the elements below
the main diagonal.
a. Apply the Gauss-Jordan method to the system of Problem 1 of these

exercises.

b. What general design strategy is this algorithm based on?

c. In general, how many multiplications are made by this method in solving
a system of n equations in n unknowns? How does this compare with the
number of multiplications made by the Gaussian elimination method in
both its elimination and back-substitution stages?

9. A system Ax = b of n linear equations in n unknowns has a unique solution if
and only if det A �= 0. Is it a good idea to check this condition before applying
Gaussian elimination to the system?

10. a. Apply Cramer’s rule to solve the system of Problem 1 of these exercises.

b. Estimate how many times longer it will take to solve a system of n linear
equations in n unknowns by Cramer’s rule than by Gaussian elimination.
Assume that all the determinants in Cramer’s rule formulas are computed
independently by Gaussian elimination.

11. Lights out This one-person game is played on an n × n board composed
of 1 × 1 light panels. Each panel has a switch that can be turned on and off,
thereby toggling the on/off state of this and four vertically and horizontally
adjacent panels. (Of course, toggling a corner square affects a total of three
panels, and toggling a noncorner panel on the board’s border affects a total
of four squares.) Given an initial subset of lighted squares, the goal is to turn
all the lights off.
a. Show that an answer can be found by solving a system of linear equations

with 0/1 coefficients and right-hand sides using the modulo 2 arithmetic.

b. Use Gaussian elimination to solve the 2 × 2 “all-ones” instance of this
problem, where all the panels of the 2 × 2 board are initially lit.

c. Use Gaussian elimination to solve the 3 × 3 “all-ones” instance of this
problem, where all the panels of the 3 × 3 board are initially lit.



218 Transform-and-Conquer

6.3 Balanced Search Trees

In Sections 1.4, 4.5, and 5.3, we discussed the binary search tree—one of the prin-
cipal data structures for implementing dictionaries. It is a binary tree whose nodes
contain elements of a set of orderable items, one element per node, so that all ele-
ments in the left subtree are smaller than the element in the subtree’s root, and all
the elements in the right subtree are greater than it. Note that this transformation
from a set to a binary search tree is an example of the representation-change tech-
nique. What do we gain by such transformation compared to the straightforward
implementation of a dictionary by, say, an array? We gain in the time efficiency
of searching, insertion, and deletion, which are all in �(log n), but only in the av-
erage case. In the worst case, these operations are in �(n) because the tree can
degenerate into a severely unbalanced one with its height equal to n − 1.

Computer scientists have expended a lot of effort in trying to find a structure
that preserves the good properties of the classical binary search tree—principally,
the logarithmic efficiency of the dictionary operations and having the set’s ele-
ments sorted—but avoids its worst-case degeneracy. They have come up with two
approaches.

The first approach is of the instance-simplification variety: an unbalanced
binary search tree is transformed into a balanced one. Because of this, such
trees are called self-balancing. Specific implementations of this idea differ
by their definition of balance. An AVL tree requires the difference between
the heights of the left and right subtrees of every node never exceed 1. A
red-black tree tolerates the height of one subtree being twice as large as the
other subtree of the same node. If an insertion or deletion of a new node
creates a tree with a violated balance requirement, the tree is restructured
by one of a family of special transformations called rotations that restore the
balance required. In this section, we will discuss only AVL trees. Information
about other types of binary search trees that utilize the idea of rebalancing
via rotations, including red-black trees and splay trees, can be found in the
references [Cor09], [Sed02], and [Tar83].
The second approach is of the representation-change variety: allow more than
one element in a node of a search tree. Specific cases of such trees are 2-3
trees, 2-3-4 trees, and more general and important B-trees. They differ in the
number of elements admissible in a single node of a search tree, but all are
perfectly balanced. We discuss the simplest case of such trees, the 2-3 tree, in
this section, leaving the discussion of B-trees for Chapter 7.

AVL Trees

AVL trees were invented in 1962 by two Russian scientists, G. M. Adelson-Velsky
and E. M. Landis [Ade62], after whom this data structure is named.
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FIGURE 6.2 (a) AVL tree. (b) Binary search tree that is not an AVL tree. The numbers
above the nodes indicate the nodes’ balance factors.

DEFINITION An AVL tree is a binary search tree in which the balance factor of
every node, which is defined as the difference between the heights of the node’s
left and right subtrees, is either 0 or +1 or −1. (The height of the empty tree is
defined as −1. Of course, the balance factor can also be computed as the difference
between the numbers of levels rather than the height difference of the node’s left
and right subtrees.)

For example, the binary search tree in Figure 6.2a is an AVL tree but the one
in Figure 6.2b is not.

If an insertion of a new node makes an AVL tree unbalanced, we transform
the tree by a rotation. A rotation in an AVL tree is a local transformation of its
subtree rooted at a node whose balance has become either +2 or −2. If there are
several such nodes, we rotate the tree rooted at the unbalanced node that is the
closest to the newly inserted leaf. There are only four types of rotations; in fact,
two of them are mirror images of the other two. In their simplest form, the four
rotations are shown in Figure 6.3.

The first rotation type is called the single right rotation, or R-rotation. (Imag-
ine rotating the edge connecting the root and its left child in the binary tree in
Figure 6.3a to the right.) Figure 6.4 presents the single R-rotation in its most gen-
eral form. Note that this rotation is performed after a new key is inserted into the
left subtree of the left child of a tree whose root had the balance of +1 before the
insertion.

The symmetric single left rotation, or L-rotation, is the mirror image of the
single R-rotation. It is performed after a new key is inserted into the right subtree
of the right child of a tree whose root had the balance of −1 before the insertion.
(You are asked to draw a diagram of the general case of the single L-rotation in
the exercises.)
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FIGURE 6.3 Four rotation types for AVL trees with three nodes. (a) Single R-rotation.
(b) Single L-rotation. (c) Double LR-rotation. (d) Double RL-rotation.

The second rotation type is called the double left-right rotation (LR-
rotation). It is, in fact, a combination of two rotations: we perform the L-rotation
of the left subtree of root r followed by the R-rotation of the new tree rooted at
r (Figure 6.5). It is performed after a new key is inserted into the right subtree of
the left child of a tree whose root had the balance of +1 before the insertion.
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FIGURE 6.4 General form of the R-rotation in the AVL tree. A shaded node is the last
one inserted.
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FIGURE 6.5 General form of the double LR-rotation in the AVL tree. A shaded node
is the last one inserted. It can be either in the left subtree or in the right
subtree of the root’s grandchild.

The double right-left rotation (RL-rotation) is the mirror image of the double
LR-rotation and is left for the exercises.

Note that the rotations are not trivial transformations, though fortunately they
can be done in constant time. Not only should they guarantee that a resulting tree is
balanced, but they should also preserve the basic requirements of a binary search
tree. For example, in the initial tree of Figure 6.4, all the keys of subtree T1 are
smaller than c, which is smaller than all the keys of subtree T2, which are smaller
than r, which is smaller than all the keys of subtree T3. And the same relationships
among the key values hold, as they must, for the balanced tree after the rotation.
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FIGURE 6.6 Construction of an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive
insertions. The parenthesized number of a rotation’s abbreviation indicates
the root of the tree being reorganized.

An example of constructing an AVL tree for a given list of numbers is shown
in Figure 6.6. As you trace the algorithm’s operations, keep in mind that if there
are several nodes with the ±2 balance, the rotation is done for the tree rooted at
the unbalanced node that is the closest to the newly inserted leaf.

How efficient are AVL trees? As with any search tree, the critical charac-
teristic is the tree’s height. It turns out that it is bounded both above and below



6.3 Balanced Search Trees 223

by logarithmic functions. Specifically, the height h of any AVL tree with n nodes
satisfies the inequalities

�log2 n� ≤ h < 1.4405 log2(n + 2) − 1.3277.

(These weird-looking constants are round-offs of some irrational numbers related
to Fibonacci numbers and the golden ratio—see Section 2.5.)

The inequalities immediately imply that the operations of searching and in-
sertion are �(log n) in the worst case. Getting an exact formula for the average
height of an AVL tree constructed for random lists of keys has proved to be dif-
ficult, but it is known from extensive experiments that it is about 1.01log2 n + 0.1
except when n is small [KnuIII, p. 468]. Thus, searching in an AVL tree requires,
on average, almost the same number of comparisons as searching in a sorted array
by binary search.

The operation of key deletion in an AVL tree is considerably more difficult
than insertion, but fortunately it turns out to be in the same efficiency class as
insertion, i.e., logarithmic.

These impressive efficiency characteristics come at a price, however. The
drawbacks of AVL trees are frequent rotations and the need to maintain bal-
ances for its nodes. These drawbacks have prevented AVL trees from becoming
the standard structure for implementing dictionaries. At the same time, their un-
derlying idea—that of rebalancing a binary search tree via rotations—has proved
to be very fruitful and has led to discoveries of other interesting variations of the
classical binary search tree.

2-3 Trees

As mentioned at the beginning of this section, the second idea of balancing a
search tree is to allow more than one key in the same node of such a tree. The
simplest implementation of this idea is 2-3 trees, introduced by the U.S. computer
scientist John Hopcroft in 1970. A 2-3 tree is a tree that can have nodes of two
kinds: 2-nodes and 3-nodes. A 2-node contains a single key K and has two children:
the left child serves as the root of a subtree whose keys are less than K , and the
right child serves as the root of a subtree whose keys are greater than K. (In other
words, a 2-node is the same kind of node we have in the classical binary search
tree.) A 3-node contains two ordered keys K1 and K2 (K1 < K2) and has three
children. The leftmost child serves as the root of a subtree with keys less than K1,
the middle child serves as the root of a subtree with keys between K1 and K2,

and the rightmost child serves as the root of a subtree with keys greater than K2
(Figure 6.7).

The last requirement of the 2-3 tree is that all its leaves must be on the same
level. In other words, a 2-3 tree is always perfectly height-balanced: the length of
a path from the root to a leaf is the same for every leaf. It is this property that we
“buy” by allowing more than one key in the same node of a search tree.

Searching for a given key K in a 2-3 tree is quite straightforward. We start
at the root. If the root is a 2-node, we act as if it were a binary search tree: we
either stop if K is equal to the root’s key or continue the search in the left or right
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FIGURE 6.7 Two kinds of nodes of a 2-3 tree.

subtree if K is, respectively, smaller or larger than the root’s key. If the root is a 3-
node, we know after no more than two key comparisons whether the search can
be stopped (if K is equal to one of the root’s keys) or in which of the root’s three
subtrees it needs to be continued.

Inserting a new key in a 2-3 tree is done as follows. First of all, we always
insert a new key K in a leaf, except for the empty tree. The appropriate leaf is
found by performing a search for K . If the leaf in question is a 2-node, we insert
K there as either the first or the second key, depending on whether K is smaller or
larger than the node’s old key. If the leaf is a 3-node, we split the leaf in two: the
smallest of the three keys (two old ones and the new key) is put in the first leaf,
the largest key is put in the second leaf, and the middle key is promoted to the
old leaf’s parent. (If the leaf happens to be the tree’s root, a new root is created
to accept the middle key.) Note that promotion of a middle key to its parent can
cause the parent’s overflow (if it was a 3-node) and hence can lead to several node
splits along the chain of the leaf’s ancestors.

An example of a 2-3 tree construction is given in Figure 6.8.
As for any search tree, the efficiency of the dictionary operations depends on

the tree’s height. So let us first find an upper bound for it. A 2-3 tree of height h

with the smallest number of keys is a full tree of 2-nodes (such as the final tree in
Figure 6.8 for h = 2). Therefore, for any 2-3 tree of height h with n nodes, we get
the inequality

n ≥ 1 + 2 + . . . + 2h = 2h+1 − 1,

and hence

h ≤ log2(n + 1) − 1.

On the other hand, a 2-3 tree of height h with the largest number of keys is a full
tree of 3-nodes, each with two keys and three children. Therefore, for any 2-3 tree
with n nodes,

n ≤ 2 . 1 + 2 . 3 + . . . + 2 . 3h = 2(1 + 3 + . . . + 3h) = 3h+1 − 1



6.3 Balanced Search Trees 225

8

8 8

5

2

2 2 2

3 8

9 9 94 47 7

25

5

9 99

9 9 93, 5

3, 8 3, 8

3, 8

4, 5

5, 9

2, 3, 5

3, 5, 8

4, 5, 7

5, 8, 9

FIGURE 6.8 Construction of a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7.

and hence

h ≥ log3(n + 1) − 1.

These lower and upper bounds on height h,

log3(n + 1) − 1 ≤ h ≤ log2(n + 1) − 1,

imply that the time efficiencies of searching, insertion, and deletion are all in
�(log n) in both the worst and average case. We consider a very important gener-
alization of 2-3 trees, called B-trees, in Section 7.4.

Exercises 6.3

1. Which of the following binary trees are AVL trees?

3 6 4 6 3 6

5 5 5

2 8 2 8 1

1 3 7 9

2 7 9

(a) (b) (c)

2. a. For n = 1, 2, 3, 4, and 5, draw all the binary trees with n nodes that satisfy
the balance requirement of AVL trees.
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b. Draw a binary tree of height 4 that can be an AVL tree and has the smallest
number of nodes among all such trees.

3. Draw diagrams of the single L-rotation and of the double RL-rotation in their
general form.

4. For each of the following lists, construct an AVL tree by inserting their ele-
ments successively, starting with the empty tree.
a. 1, 2, 3, 4, 5, 6

b. 6, 5, 4, 3, 2, 1

c. 3, 6, 5, 1, 2, 4

5. a. For an AVL tree containing real numbers, design an algorithm for comput-
ing the range (i.e., the difference between the largest and smallest numbers
in the tree) and determine its worst-case efficiency.

b. True or false: The smallest and the largest keys in an AVL tree can always
be found on either the last level or the next-to-last level?

6. Write a program for constructing an AVL tree for a given list of n distinct
integers.

7. a. Construct a 2-3 tree for the list C, O, M, P, U, T, I, N, G. Use the alphabetical
order of the letters and insert them successively starting with the empty
tree.

b. Assuming that the probabilities of searching for each of the keys (i.e., the
letters) are the same, find the largest number and the average number of
key comparisons for successful searches in this tree.

8. Let TB and T2-3 be, respectively, a classical binary search tree and a 2-3 tree
constructed for the same list of keys inserted in the corresponding trees in
the same order. True or false: Searching for the same key in T2-3 always takes
fewer or the same number of key comparisons as searching in TB?

9. For a 2-3 tree containing real numbers, design an algorithm for computing
the range (i.e., the difference between the largest and smallest numbers in the
tree) and determine its worst-case efficiency.

10. Write a program for constructing a 2-3 tree for a given list of n integers.

6.4 Heaps and Heapsort

The data structure called the “heap” is definitely not a disordered pile of items
as the word’s definition in a standard dictionary might suggest. Rather, it is a
clever, partially ordered data structure that is especially suitable for implementing
priority queues. Recall that a priority queue is a multiset of items with an orderable
characteristic called an item’s priority, with the following operations:
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FIGURE 6.9 Illustration of the definition of heap: only the leftmost tree is a heap.

finding an item with the highest (i.e., largest) priority
deleting an item with the highest priority
adding a new item to the multiset

It is primarily an efficient implementation of these operations that makes
the heap both interesting and useful. Priority queues arise naturally in such ap-
plications as scheduling job executions by computer operating systems and traf-
fic management by communication networks. They also arise in several impor-
tant algorithms, e.g., Prim’s algorithm (Section 9.1), Dijkstra’s algorithm (Sec-
tion 9.3), Huffman encoding (Section 9.4), and branch-and-bound applications
(Section 12.2). The heap is also the data structure that serves as a cornerstone of
a theoretically important sorting algorithm called heapsort. We discuss this algo-
rithm after we define the heap and investigate its basic properties.

Notion of the Heap

DEFINITION A heap can be defined as a binary tree with keys assigned to its
nodes, one key per node, provided the following two conditions are met:

1. The shape property—the binary tree is essentially complete (or simply com-
plete), i.e., all its levels are full except possibly the last level, where only some
rightmost leaves may be missing.

2. The parental dominance or heap property—the key in each node is greater
than or equal to the keys in its children. (This condition is considered auto-
matically satisfied for all leaves.)5

For example, consider the trees of Figure 6.9. The first tree is a heap. The
second one is not a heap, because the tree’s shape property is violated. And the
third one is not a heap, because the parental dominance fails for the node with
key 5.

Note that key values in a heap are ordered top down; i.e., a sequence of values
on any path from the root to a leaf is decreasing (nonincreasing, if equal keys are
allowed). However, there is no left-to-right order in key values; i.e., there is no

5. Some authors require the key at each node to be less than or equal to the keys at its children. We call
this variation a min-heap.
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FIGURE 6.10 Heap and its array representation.

relationship among key values for nodes either on the same level of the tree or,
more generally, in the left and right subtrees of the same node.

Here is a list of important properties of heaps, which are not difficult to prove
(check these properties for the heap of Figure 6.10, as an example).

1. There exists exactly one essentially complete binary tree with n nodes. Its
height is equal to �log2 n�.

2. The root of a heap always contains its largest element.
3. A node of a heap considered with all its descendants is also a heap.
4. A heap can be implemented as an array by recording its elements in the top-

down, left-to-right fashion. It is convenient to store the heap’s elements in
positions 1 through n of such an array, leaving H [0] either unused or putting
there a sentinel whose value is greater than every element in the heap. In such
a representation,
a. the parental node keys will be in the first �n/2� positions of the array,

while the leaf keys will occupy the last �n/2� positions;
b. the children of a key in the array’s parental position i (1 ≤ i ≤ �n/2�) will

be in positions 2i and 2i + 1, and, correspondingly, the parent of a key in
position i (2 ≤ i ≤ n) will be in position �i/2�.

Thus, we could also define a heap as an array H [1..n] in which every element
in position i in the first half of the array is greater than or equal to the elements
in positions 2i and 2i + 1, i.e.,

H [i] ≥ max{H [2i], H [2i + 1]} for i = 1, . . . , �n/2�.
(Of course, if 2i + 1 > n, just H [i] ≥ H [2i] needs to be satisfied.) While the ideas
behind the majority of algorithms dealing with heaps are easier to understand if
we think of heaps as binary trees, their actual implementations are usually much
simpler and more efficient with arrays.

How can we construct a heap for a given list of keys? There are two principal
alternatives for doing this. The first is the bottom-up heap construction algorithm
illustrated in Figure 6.11. It initializes the essentially complete binary tree with n

nodes by placing keys in the order given and then “heapifies” the tree as follows.
Starting with the last parental node, the algorithm checks whether the parental
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FIGURE 6.11 Bottom-up construction of a heap for the list 2, 9, 7, 6, 5, 8. The double-
headed arrows show key comparisons verifying the parental dominance.

dominance holds for the key in this node. If it does not, the algorithm exchanges
the node’s key K with the larger key of its children and checks whether the
parental dominance holds for K in its new position. This process continues until
the parental dominance for K is satisfied. (Eventually, it has to because it holds
automatically for any key in a leaf.) After completing the “heapification” of the
subtree rooted at the current parental node, the algorithm proceeds to do the same
for the node’s immediate predecessor. The algorithm stops after this is done for
the root of the tree.

ALGORITHM HeapBottomUp(H [1..n])

//Constructs a heap from elements of a given array
// by the bottom-up algorithm
//Input: An array H [1..n] of orderable items
//Output: A heap H [1..n]
for i ← �n/2� downto 1 do

k ← i; v ← H [k]
heap ← false
while not heap and 2 ∗ k ≤ n do

j ← 2 ∗ k

if j < n //there are two children
if H [j ] < H [j + 1] j ← j + 1

if v ≥ H [j ]
heap ← true

else H [k] ← H [j ]; k ← j

H [k] ← v

How efficient is this algorithm in the worst case? Assume, for simplicity,
that n = 2k − 1 so that a heap’s tree is full, i.e., the largest possible number of
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nodes occurs on each level. Let h be the height of the tree. According to the first
property of heaps in the list at the beginning of the section, h = �log2 n� or just
�log2 (n + 1)� − 1 = k − 1 for the specific values of n we are considering. Each
key on level i of the tree will travel to the leaf level h in the worst case of the
heap construction algorithm. Since moving to the next level down requires two
comparisons—one to find the larger child and the other to determine whether
the exchange is required—the total number of key comparisons involving a key
on level i will be 2(h − i). Therefore, the total number of key comparisons in the
worst case will be

Cworst(n) =
h−1∑
i=0

∑
level i keys

2(h − i) =
h−1∑
i=0

2(h − i)2i = 2(n − log2(n + 1)),

where the validity of the last equality can be proved either by using the closed-form
formula for the sum

∑h
i=1 i2i (see Appendix A) or by mathematical induction on

h. Thus, with this bottom-up algorithm, a heap of size n can be constructed with
fewer than 2n comparisons.

The alternative (and less efficient) algorithm constructs a heap by successive
insertions of a new key into a previously constructed heap; some people call it
the top-down heap construction algorithm. So how can we insert a new key K

into a heap? First, attach a new node with key K in it after the last leaf of the
existing heap. Then sift K up to its appropriate place in the new heap as follows.
Compare K with its parent’s key: if the latter is greater than or equal to K, stop
(the structure is a heap); otherwise, swap these two keys and compare K with its
new parent. This swapping continues until K is not greater than its last parent or
it reaches the root (illustrated in Figure 6.12).

Obviously, this insertion operation cannot require more key comparisons than
the heap’s height. Since the height of a heap with n nodes is about log2 n, the time
efficiency of insertion is in O(log n).

How can we delete an item from a heap? We consider here only the most
important case of deleting the root’s key, leaving the question about deleting an
arbitrary key in a heap for the exercises. (Authors of textbooks like to do such
things to their readers, do they not?) Deleting the root’s key from a heap can be
done with the following algorithm, illustrated in Figure 6.13.

9

6 8

2 5 7

9

6 10

2 5 8710

10

6 9

2 5 87

FIGURE 6.12 Inserting a key (10) into the heap constructed in Figure 6.11. The new key
is sifted up via a swap with its parent until it is not larger than its parent
(or is in the root).
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FIGURE 6.13 Deleting the root’s key from a heap. The key to be deleted is swapped
with the last key after which the smaller tree is “heapified” by exchanging
the new key in its root with the larger key in its children until the parental
dominance requirement is satisfied.

Maximum Key Deletion from a heap

Step 1 Exchange the root’s key with the last key K of the heap.
Step 2 Decrease the heap’s size by 1.
Step 3 “Heapify” the smaller tree by sifting K down the tree exactly in the

same way we did it in the bottom-up heap construction algorithm. That
is, verify the parental dominance for K : if it holds, we are done; if not,
swap K with the larger of its children and repeat this operation until
the parental dominance condition holds for K in its new position.

The efficiency of deletion is determined by the number of key comparisons
needed to “heapify” the tree after the swap has been made and the size of the tree
is decreased by 1. Since this cannot require more key comparisons than twice the
heap’s height, the time efficiency of deletion is in O(log n) as well.

Heapsort

Now we can describe heapsort—an interesting sorting algorithm discovered by
J. W. J. Williams [Wil64]. This is a two-stage algorithm that works as follows.

Stage 1 (heap construction): Construct a heap for a given array.
Stage 2 (maximum deletions): Apply the root-deletion operation n − 1 times

to the remaining heap.

As a result, the array elements are eliminated in decreasing order. But since
under the array implementation of heaps an element being deleted is placed last,
the resulting array will be exactly the original array sorted in increasing order.
Heapsort is traced on a specific input in Figure 6.14. (The same input as the one
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FIGURE 6.14 Sorting the array 2, 9, 7, 6, 5, 8 by heapsort.

in Figure 6.11 is intentionally used so that you can compare the tree and array
implementations of the bottom-up heap construction algorithm.)

Since we already know that the heap construction stage of the algorithm is in
O(n), we have to investigate just the time efficiency of the second stage. For the
number of key comparisons, C(n), needed for eliminating the root keys from the
heaps of diminishing sizes from n to 2, we get the following inequality:

C(n) ≤ 2�log2(n − 1)� + 2�log2(n − 2)� + . . . + 2�log2 1� ≤ 2
n−1∑
i=1

log2 i

≤ 2
n−1∑
i=1

log2(n − 1) = 2(n − 1) log2(n − 1) ≤ 2n log2 n.

This means that C(n) ∈ O(n log n) for the second stage of heapsort. For both stages,
we get O(n) + O(n log n) = O(n log n). A more detailed analysis shows that the
time efficiency of heapsort is, in fact, in �(n log n) in both the worst and average
cases. Thus, heapsort’s time efficiency falls in the same class as that of mergesort.
Unlike the latter, heapsort is in-place, i.e., it does not require any extra storage.
Timing experiments on random files show that heapsort runs more slowly than
quicksort but can be competitive with mergesort.
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Exercises 6.4

1. a. Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by the bottom-up algorithm.

b. Construct a heap for the list 1, 8, 6, 5, 3, 7, 4 by successive key insertions
(top-down algorithm).

c. Is it always true that the bottom-up and top-down algorithms yield the
same heap for the same input?

2. Outline an algorithm for checking whether an array H [1..n] is a heap and
determine its time efficiency.

3. a. Find the smallest and the largest number of keys that a heap of height h

can contain.

b. Prove that the height of a heap with n nodes is equal to �log2 n�.
4. Prove the following equality used in Section 6.4:

h−1∑
i=0

2(h − i)2i = 2(n − log2(n + 1)), where n = 2h+1 − 1.

5. a. Design an efficient algorithm for finding and deleting an element of the
smallest value in a heap and determine its time efficiency.

b. Design an efficient algorithm for finding and deleting an element of a given
value v in a heap H and determine its time efficiency.

6. Indicate the time efficiency classes of the three main operations of the priority
queue implemented as
a. an unsorted array.

b. a sorted array.

c. a binary search tree.

d. an AVL tree.

e. a heap.

7. Sort the following lists by heapsort by using the array representation of heaps.
a. 1, 2, 3, 4, 5 (in increasing order)

b. 5, 4, 3, 2, 1 (in increasing order)

c. S, O, R, T, I, N, G (in alphabetical order)

8. Is heapsort a stable sorting algorithm?

9. What variety of the transform-and-conquer technique does heapsort repre-
sent?

10. Which sorting algorithm other than heapsort uses a priority queue?

11. Implement three advanced sorting algorithms—mergesort, quicksort, and
heapsort—in the language of your choice and investigate their performance
on arrays of sizes n = 103, 104, 105, and 106. For each of these sizes consider
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a. randomly generated files of integers in the range [1..n].

b. increasing files of integers 1, 2, . . . , n.

c. decreasing files of integers n, n − 1, . . . , 1.

12. Spaghetti sort Imagine a handful of uncooked spaghetti, individual rods
whose lengths represent numbers that need to be sorted.
a. Outline a “spaghetti sort”—a sorting algorithm that takes advantage of

this unorthodox representation.

b. What does this example of computer science folklore (see [Dew93]) have
to do with the topic of this chapter in general and heapsort in particular?

6.5 Horner’s Rule and Binary Exponentiation

In this section, we discuss the problem of computing the value of a polynomial

p(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 (6.1)

at a given point x and its important special case of computing xn. Polynomials
constitute the most important class of functions because they possess a wealth of
good properties on the one hand and can be used for approximating other types of
functions on the other. The problem of manipulating polynomials efficiently has
been important for several centuries; new discoveries were still being made the
last 50 years. By far the most important of them was the fast Fourier transform
(FFT). The practical importance of this remarkable algorithm, which is based on
representing a polynomial by its values at specially chosen points, was such that
some people consider it one of the most important algorithmic discoveries of all
time. Because of its relative complexity, we do not discuss the FFT algorithm in this
book. An interested reader will find a wealth of literature on the subject, including
reasonably accessible treatments in such textbooks as [Kle06] and [Cor09].

Horner’s Rule

Horner’s rule is an old but very elegant and efficient algorithm for evaluating a
polynomial. It is named after the British mathematician W. G. Horner, who pub-
lished it in the early 19th century. But according to Knuth [KnuII, p. 486], the
method was used by Isaac Newton 150 years before Horner. You will appreciate
this method much more if you first design an algorithm for the polynomial evalu-
ation problem by yourself and investigate its efficiency (see Problems 1 and 2 in
this section’s exercises).

Horner’s rule is a good example of the representation-change technique since
it is based on representing p(x) by a formula different from (6.1). This new formula
is obtained from (6.1) by successively taking x as a common factor in the remaining
polynomials of diminishing degrees:

p(x) = (. . . (anx + an−1)x + . . .)x + a0. (6.2)
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For example, for the polynomial p(x) = 2x4 − x3 + 3x2 + x − 5, we get

p(x) = 2x4 − x3 + 3x2 + x − 5

= x(2x3 − x2 + 3x + 1) − 5

= x(x(2x2 − x + 3) + 1) − 5

= x(x(x(2x − 1) + 3) + 1) − 5. (6.3)

It is in formula (6.2) that we will substitute a value of x at which the polyno-
mial needs to be evaluated. It is hard to believe that this is a way to an efficient
algorithm, but the unpleasant appearance of formula (6.2) is just that, an appear-
ance. As we shall see, there is no need to go explicitly through the transformation
leading to it: all we need is an original list of the polynomial’s coefficients.

The pen-and-pencil calculation can be conveniently organized with a two-
row table. The first row contains the polynomial’s coefficients (including all the
coefficients equal to zero, if any) listed from the highest an to the lowest a0. Except
for its first entry, which is an, the second row is filled left to right as follows: the
next entry is computed as the x’s value times the last entry in the second row plus
the next coefficient from the first row. The final entry computed in this fashion is
the value being sought.

EXAMPLE 1 Evaluate p(x) = 2x4 − x3 + 3x2 + x − 5 at x = 3.

coefficients 2 −1 3 1 −5
x = 3 2 3 . 2 + (−1) = 5 3 . 5 + 3 = 18 3 . 18 + 1 = 55 3 . 55 + (−5) = 160

Thus, p(3) = 160. (On comparing the table’s entries with formula (6.3), you will
see that 3 . 2 + (−1) = 5 is the value of 2x − 1 at x = 3, 3 . 5 + 3 = 18 is the value of
x(2x − 1) + 3 at x = 3, 3 . 18 + 1 = 55 is the value of x(x(2x − 1) + 3) + 1 at x = 3,
and, finally, 3 . 55 + (−5) = 160 is the value of x(x(x(2x − 1) + 3) + 1) − 5 = p(x)

at x = 3.)

Pseudocode of this algorithm is the shortest one imaginable for a nontrivial
algorithm:

ALGORITHM Horner(P [0..n], x)

//Evaluates a polynomial at a given point by Horner’s rule
//Input: An array P [0..n] of coefficients of a polynomial of degree n,

// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at x

p ← P [n]
for i ← n − 1 downto 0 do

p ← x ∗ p + P [i]
return p
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The number of multiplications and the number of additions are given by the
same sum:

M(n) = A(n) =
n−1∑
i=0

1 = n.

To appreciate how efficient Horner’s rule is, consider only the first term of
a polynomial of degree n: anx

n. Just computing this single term by the brute-
force algorithm would require n multiplications, whereas Horner’s rule computes,
in addition to this term, n − 1 other terms, and it still uses the same number of
multiplications! It is not surprising that Horner’s rule is an optimal algorithm for
polynomial evaluation without preprocessing the polynomial’s coefficients. But it
took scientists 150 years after Horner’s publication to come to the realization that
such a question was worth investigating.

Horner’s rule also has some useful byproducts. The intermediate numbers
generated by the algorithm in the process of evaluating p(x) at some point x0 turn
out to be the coefficients of the quotient of the division of p(x) by x − x0, and the
final result, in addition to being p(x0), is equal to the remainder of this division.
Thus, according to Example 1, the quotient and the remainder of the division of
2x4 − x3 + 3x2 + x − 5 by x − 3 are 2x3 + 5x2 + 18x + 55 and 160, respectively.
This division algorithm, known as synthetic division, is more convenient than so-
called long division.

Binary Exponentiation

The amazing efficiency of Horner’s rule fades if the method is applied to comput-
ing an, which is the value of xn at x = a. In fact, it degenerates to the brute-force
multiplication of a by itself, with wasteful additions of zeros in between. Since
computing an (actually, an mod m) is an essential operation in several important
primality-testing and encryption methods, we consider now two algorithms for
computing an that are based on the representation-change idea. They both exploit
the binary representation of exponent n, but one of them processes this binary
string left to right, whereas the second does it right to left.

Let

n = bI . . . bi . . . b0

be the bit string representing a positive integer n in the binary number system.
This means that the value of n can be computed as the value of the polynomial

p(x) = bIx
I + . . . + bix

i + . . . + b0 (6.4)

at x = 2. For example, if n = 13, its binary representation is 1101 and

13 = 1 . 23 + 1 . 22 + 0 . 21 + 1 . 20.

Let us now compute the value of this polynomial by applying Horner’s rule
and see what the method’s operations imply for computing the power

an = ap(2) = abI 2I+...+bi2
i+...+b0.
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Horner’s rule for the binary polynomial p(2) Implications for an = ap(2)

p ← 1 //the leading digit is always 1 for n ≥ 1 ap ← a1

for i ← I − 1 downto 0 do for i ← I − 1 downto 0 do
p ← 2p + bi ap ← a2p+bi

But

a2p+bi = a2p . abi = (ap)2 . abi =
{

(ap)2 if bi = 0,
(ap)2 . a if bi = 1.

Thus, after initializing the accumulator’s value to a, we can scan the bit string
representing the exponent n to always square the last value of the accumulator
and, if the current binary digit is 1, also to multiply it by a. These observations lead
to the following left-to-right binary exponentiation method of computing an.

ALGORITHM LeftRightBinaryExponentiation(a, b(n))

//Computes an by the left-to-right binary exponentiation algorithm
//Input: A number a and a list b(n) of binary digits bI , . . . , b0
// in the binary expansion of a positive integer n

//Output: The value of an

product ← a

for i ← I − 1 downto 0 do
product ← product ∗ product

if bi = 1 product ← product ∗ a

return product

EXAMPLE 2 Compute a13 by the left-to-right binary exponentiation algorithm.
Here, n = 13 = 11012. So we have

binary digits of n 1 1 0 1
product accumulator a a2 . a = a3 (a3)2 = a6 (a6)2 . a = a13

Since the algorithm makes one or two multiplications on each repetition of its
only loop, the total number of multiplications M(n) made by it in computing an is

(b − 1) ≤ M(n) ≤ 2(b − 1),

where b is the length of the bit string representing the exponent n. Taking into
account that b − 1 = �log2 n�, we can conclude that the efficiency of the left-
to-right binary exponentiation is logarithmic. Thus, this algorithm is in a better
efficiency class than the brute-force exponentiation, which always requires n − 1
multiplications.



238 Transform-and-Conquer

The right-to-left binary exponentiation uses the same binary polynomial p(2)

(see (6.4)) yielding the value of n. But rather than applying Horner’s rule to it as
the previous method did, this one exploits it differently:

an = abI 2I+...+bi2
i+...+b0 = abI 2I

. . . . . abi2
i
. . . . . ab0.

Thus, an can be computed as the product of the terms

abi2
i =

{
a2i

if bi = 1,
1 if bi = 0,

i.e., the product of consecutive terms a2i
, skipping those for which the binary digit

bi is zero. In addition, we can compute a2i
by simply squaring the same term we

computed for the previous value of i since a2i
= (a2i−1

)2. So we compute all such
powers of a from the smallest to the largest (from right to left), but we include in
the product accumulator only those whose corresponding binary digit is 1. Here
is pseudocode of this algorithm.

ALGORITHM RightLeftBinaryExponentiation(a, b(n))

//Computes an by the right-to-left binary exponentiation algorithm
//Input: A number a and a list b(n) of binary digits bI , . . . , b0
// in the binary expansion of a nonnegative integer n

//Output: The value of an

term ← a //initializes a2i

if b0 = 1 product ← a

else product ← 1
for i ← 1 to I do

term ← term ∗ term

if bi = 1 product ← product ∗ term

return product

EXAMPLE 3 Compute a13 by the right-to-left binary exponentiation method.
Here, n = 13 = 11012. So we have the following table filled in from right to

left:

1 1 0 1 binary digits of n

a8 a4 a2 a terms a2i

a5 . a8 = a13 a . a4 = a5 a product accumulator

Obviously, the algorithm’s efficiency is also logarithmic for the same reason
the left-to-right binary multiplication is. The usefulness of both binary exponentia-
tion algorithms is reduced somewhat by their reliance on availability of the explicit
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binary expansion of exponent n. Problem 9 in this section’s exercises asks you to
design an algorithm that does not have this shortcoming.

Exercises 6.5

1. Consider the following brute-force algorithm for evaluating a polynomial.

ALGORITHM BruteForcePolynomialEvaluation(P [0..n], x)

//Computes the value of polynomial P at a given point x

//by the “highest to lowest term” brute-force algorithm
//Input: An array P [0..n] of the coefficients of a polynomial of degree n,
// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at the point x

p ← 0.0
for i ← n downto 0 do

power ← 1
for j ← 1 to i do

power ← power ∗ x

p ← p + P [i] ∗ power

return p

Find the total number of multiplications and the total number of additions
made by this algorithm.

2. Write pseudocode for the brute-force polynomial evaluation that stems from
substituting a given value of the variable into the polynomial’s formula and
evaluating it from the lowest term to the highest one. Determine the number
of multiplications and the number of additions made by this algorithm.

3. a. Estimate how much faster Horner’s rule is compared to the “lowest-to-
highest term” brute-force algorithm of Problem 2 if (i) the time of one
multiplication is significantly larger than the time of one addition; (ii) the
time of one multiplication is about the same as the time of one addition.

b. Is Horner’s rule more time efficient at the expense of being less space
efficient than the brute-force algorithm?

4. a. Apply Horner’s rule to evaluate the polynomial

p(x) = 3x4 − x3 + 2x + 5 at x = −2.

b. Use the results of the above application of Horner’s rule to find the quo-
tient and remainder of the division of p(x) by x + 2.

5. Apply Horner’s rule to convert 110100101 from binary to decimal.

6. Compare the number of multiplications and additions/subtractions needed
by the “long division” of a polynomial p(x) = anx

n + an−1x
n−1 + . . . + a0 by



240 Transform-and-Conquer

x − c, where c is some constant, with the number of these operations in the
“synthetic division.”

7. a. Apply the left-to-right binary exponentiation algorithm to compute a17.

b. Is it possible to extend the left-to-right binary exponentiation algorithm to
work for every nonnegative integer exponent?

8. Apply the right-to-left binary exponentiation algorithm to compute a17.

9. Design a nonrecursive algorithm for computing an that mimics the right-to-left
binary exponentiation but does not explicitly use the binary representation
of n.

10. Is it a good idea to use a general-purpose polynomial-evaluation algorithm
such as Horner’s rule to evaluate the polynomial p(x) = xn + xn−1 + . . . +
x + 1?

11. According to the corollary of the Fundamental Theorem of Algebra, every
polynomial

p(x) = anx
n + an−1x

n−1 + . . . + a0

can be represented in the form

p(x) = an(x − x1)(x − x2) . . . (x − xn)

where x1, x2, . . . , xn are the roots of the polynomial (generally, complex and
not necessarily distinct). Discuss which of the two representations is more
convenient for each of the following operations:
a. polynomial evaluation at a given point

b. addition of two polynomials

c. multiplication of two polynomials

12. Polynomial interpolation Given a set of n data points (xi, yi) where no two
xi are the same, find a polynomial p(x) of degree at most n − 1 such that
p(xi) = yi for every i = 1, 2, . . . , n.

6.6 Problem Reduction

Here is my version of a well-known joke about mathematicians. Professor X, a
noted mathematician, noticed that when his wife wanted to boil water for their
tea, she took their kettle from their cupboard, filled it with water, and put it on
the stove. Once, when his wife was away (if you have to know, she was signing
her best-seller in a local bookstore), the professor had to boil water by himself.
He saw that the kettle was sitting on the kitchen counter. What did Professor X
do? He put the kettle in the cupboard first and then proceeded to follow his wife’s
routine.
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Problem 1
(to be solved)

solution
to Problem 2

Problem 2
(solvable by alg. A)

reduction alg. A

FIGURE 6.15 Problem reduction strategy.

The way Professor X approached his task is an example of an important
problem-solving strategy called problem reduction. If you need to solve a problem,
reduce it to another problem that you know how to solve (Figure 6.15).

The joke about the professor notwithstanding, the idea of problem reduction
plays a central role in theoretical computer science, where it is used to classify
problems according to their complexity. We will touch on this classification in
Chapter 11. But the strategy can be used for actual problem solving, too. The
practical difficulty in applying it lies, of course, in finding a problem to which the
problem at hand should be reduced. Moreover, if we want our efforts to be of
practical value, we need our reduction-based algorithm to be more efficient than
solving the original problem directly.

Note that we have already encountered this technique earlier in the book.
In Section 6.5, for example, we mentioned the so-called synthetic division done
by applying Horner’s rule for polynomial evaluation. In Section 5.5, we used the
following fact from analytical geometry: if p1(x1, y1), p2(x2, y2), and p3(x3, y3) are
three arbitrary points in the plane, then the determinant∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣= x1y2 + x3y1 + x2y3 − x3y2 − x1y3 − x2y1

is positive if and only if the point p3 is to the left of the directed line −−−−→
p

1
p

2
through

points p1 and p2. In other words, we reduced a geometric question about the
relative locations of three points to a question about the sign of a determinant.
In fact, the entire idea of analytical geometry is based on reducing geometric
problems to algebraic ones. And the vast majority of geometric algorithms take
advantage of this historic insight by René Descartes (1596–1650). In this section,
we give a few more examples of algorithms based on the strategy of problem
reduction.

Computing the Least Common Multiple

Recall that the least common multiple of two positive integers m and n, denoted
lcm(m, n), is defined as the smallest integer that is divisible by both m and n. For
example, lcm(24, 60) = 120, and lcm(11, 5) = 55. The least common multiple is
one of the most important notions in elementary arithmetic and algebra. Perhaps
you remember the following middle-school method for computing it: Given the
prime factorizations of m and n, compute the product of all the common prime
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factors of m and n, all the prime factors of m that are not in n, and all the prime
factors of n that are not in m. For example,

24 = 2 . 2 . 2 . 3,
60 = 2 . 2 . 3 . 5,

lcm(24, 60) = (2 . 2 . 3) . 2 . 5 = 120.

As a computational procedure, this algorithm has the same drawbacks as the
middle-school algorithm for computing the greatest common divisor discussed
in Section 1.1: it is inefficient and requires a list of consecutive primes.

A much more efficient algorithm for computing the least common multiple
can be devised by using problem reduction. After all, there is a very efficient
algorithm (Euclid’s algorithm) for finding the greatest common divisor, which is a
product of all the common prime factors of m and n. Can we find a formula relating
lcm(m, n) and gcd(m, n)? It is not difficult to see that the product of lcm(m, n) and
gcd(m, n) includes every factor of m and n exactly once and hence is simply equal
to the product of m and n. This observation leads to the formula

lcm(m, n) = m . n

gcd(m, n)
,

where gcd(m, n) can be computed very efficiently by Euclid’s algorithm.

Counting Paths in a Graph

As our next example, we consider the problem of counting paths between two
vertices in a graph. It is not difficult to prove by mathematical induction that the
number of different paths of length k > 0 from the ith vertex to the j th vertex
of a graph (undirected or directed) equals the (i, j)th element of Ak where A is
the adjacency matrix of the graph. Therefore, the problem of counting a graph’s
paths can be solved with an algorithm for computing an appropriate power of its
adjacency matrix. Note that the exponentiation algorithms we discussed before
for computing powers of numbers are applicable to matrices as well.

As a specific example, consider the graph of Figure 6.16. Its adjacency matrix
A and its square A2 indicate the numbers of paths of length 1 and 2, respectively,
between the corresponding vertices of the graph. In particular, there are three

ba
a
b
c
ddc

a b c d

A =

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

a
b
c
d

a b c d

A2 =

3
0
1
1

0
1
1
1

1
1
2
1

1
1
1
2

FIGURE 6.16 A graph, its adjacency matrix A, and its square A2. The elements of A and
A2 indicate the numbers of paths of lengths 1 and 2, respectively.
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paths of length 2 that start and end at vertex a (a − b − a, a − c − a, and a − d − a);
but there is only one path of length 2 from a to c (a − d − c).

Reduction of Optimization Problems

Our next example deals with solving optimization problems. If a problem asks to
find a maximum of some function, it is said to be a maximization problem; if it
asks to find a function’s minimum, it is called a minimization problem. Suppose
now that you need to find a minimum of some function f (x) and you have an
algorithm for function maximization. How can you take advantage of the latter?
The answer lies in the simple formula

min f (x) = − max[−f (x)].

In other words, to minimize a function, we can maximize its negative instead and,
to get a correct minimal value of the function itself, change the sign of the answer.
This property is illustrated for a function of one real variable in Figure 6.17.

Of course, the formula

max f (x) = − min[−f (x)]

is valid as well; it shows how a maximization problem can be reduced to an
equivalent minimization problem.

This relationship between minimization and maximization problems is very
general: it holds for functions defined on any domain D. In particular, we can

y

f(x*)

f (x)

–f (x)

–f (x*)

x* x

FIGURE 6.17 Relationship between minimization and maximization problems:
min f (x) = − max[−f (x)].
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apply it to functions of several variables subject to additional constraints. A very
important class of such problems is introduced below in this section.

Now that we are on the topic of function optimization, it is worth pointing out
that the standard calculus procedure for finding extremum points of a function is,
in fact, also based on problem reduction. Indeed, it suggests finding the function’s
derivative f ′(x) and then solving the equation f ′(x) = 0 to find the function’s
critical points. In other words, the optimization problem is reduced to the problem
of solving an equation as the principal part of finding extremum points. Note
that we are not calling the calculus procedure an algorithm, since it is not clearly
defined. In fact, there is no general method for solving equations. A little secret of
calculus textbooks is that problems are carefully selected so that critical points
can always be found without difficulty. This makes the lives of both students
and instructors easier but, in the process, may unintentionally create a wrong
impression in students’ minds.

Linear Programming

Many problems of optimal decision making can be reduced to an instance of
the linear programming problem—a problem of optimizing a linear function of
several variables subject to constraints in the form of linear equations and linear
inequalities.

EXAMPLE 1 Consider a university endowment that needs to invest $100 million.
This sum has to be split between three types of investments: stocks, bonds, and
cash. The endowment managers expect an annual return of 10%, 7%, and 3% for
their stock, bond, and cash investments, respectively. Since stocks are more risky
than bonds, the endowment rules require the amount invested in stocks to be no
more than one-third of the moneys invested in bonds. In addition, at least 25%
of the total amount invested in stocks and bonds must be invested in cash. How
should the managers invest the money to maximize the return?

Let us create a mathematical model of this problem. Let x, y, and z be the
amounts (in millions of dollars) invested in stocks, bonds, and cash, respectively.
By using these variables, we can pose the following optimization problem:

maximize 0.10x + 0.07y + 0.03z

subject to x + y + z = 100

x ≤ 1
3y

z ≥ 0.25(x + y)

x ≥ 0, y ≥ 0, z ≥ 0.

Although this example is both small and simple, it does show how a problem
of optimal decision making can be reduced to an instance of the general linear
programming problem
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maximize (or minimize) c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≤ (or ≥ or =) bi for i = 1, . . . , m

x1 ≥ 0, . . . , xn ≥ 0.

(The last group of constraints—called the nonnegativity constraints—are, strictly
speaking, unnecessary because they are special cases of more general constraints
ai1x1 + . . . + ainxn ≥ bi, but it is convenient to treat them separately.)

Linear programming has proved to be flexible enough to model a wide variety
of important applications, such as airline crew scheduling, transportation and
communication network planning, oil exploration and refining, and industrial
production optimization. In fact, linear programming is considered by many as
one of the most important achievements in the history of applied mathematics.

The classic algorithm for this problem is called the simplex method (Sec-
tion 10.1). It was discovered by the U.S. mathematician George Dantzig in the
1940s [Dan63]. Although the worst-case efficiency of this algorithm is known to
be exponential, it performs very well on typical inputs. Moreover, a more recent al-
gorithm by Narendra Karmarkar [Kar84] not only has a proven polynomial worst-
case efficiency but has also performed competitively with the simplex method in
empirical tests.

It is important to stress, however, that the simplex method and Karmarkar’s
algorithm can successfully handle only linear programming problems that do not
limit its variables to integer values. When variables of a linear programming
problem are required to be integers, the linear programming problem is said
to be an integer linear programming problem. Except for some special cases
(e.g., the assignment problem and the problems discussed in Sections 10.2–10.4),
integer linear programming problems are much more difficult. There is no known
polynomial-time algorithm for solving an arbitrary instance of the general integer
linear programming problem and, as we see in Chapter 11, such an algorithm
quite possibly does not exist. Other approaches such as the branch-and-bound
technique discussed in Section 12.2 are typically used for solving integer linear
programming problems.

EXAMPLE 2 Let us see how the knapsack problem can be reduced to a linear
programming problem. Recall from Section 3.4 that the knapsack problem can
be posed as follows. Given a knapsack of capacity W and n items of weights
w1, . . . , wn and values v1, . . . , vn, find the most valuable subset of the items that fits
into the knapsack. We consider first the continuous (or fractional) version of the
problem, in which any fraction of any item given can be taken into the knapsack.
Let xj , j = 1, . . . , n, be a variable representing a fraction of item j taken into
the knapsack. Obviously, xj must satisfy the inequality 0 ≤ xj ≤ 1. Then the total
weight of the selected items can be expressed by the sum

∑n
j=1 wjxj, and their

total value by the sum
∑n

j=1 vjxj . Thus, the continuous version of the knapsack
problem can be posed as the following linear programming problem:
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maximize
n∑

j=1

vjxj

subject to
n∑

j=1

wjxj ≤ W

0 ≤ xj ≤ 1 for j = 1, . . . , n.

There is no need to apply a general method for solving linear programming
problems here: this particular problem can be solved by a simple special algorithm
that is introduced in Section 12.3. (But why wait? Try to discover it on your
own now.) This reduction of the knapsack problem to an instance of the linear
programming problem is still useful, though, to prove the correctness of the
algorithm in question.

In the discrete (or 0-1) version of the knapsack problem, we are only allowed
either to take a whole item or not to take it at all. Hence, we have the following
integer linear programming problem for this version:

maximize
n∑

j=1

vjxj

subject to
n∑

j=1

wjxj ≤ W

xj ∈ {0, 1} for j = 1, . . . , n.

This seemingly minor modification makes a drastic difference for the com-
plexity of this and similar problems constrained to take only discrete values in
their potential ranges. Despite the fact that the 0-1 version might seem to be eas-
ier because it can ignore any subset of the continuous version that has a fractional
value of an item, the 0-1 version is, in fact, much more complicated than its con-
tinuous counterpart. The reader interested in specific algorithms for solving this
problem will find a wealth of literature on the subject, including the monographs
[Mar90] and [Kel04].

Reduction to Graph Problems

As we pointed out in Section 1.3, many problems can be solved by a reduction
to one of the standard graph problems. This is true, in particular, for a variety of
puzzles and games. In these applications, vertices of a graph typically represent
possible states of the problem in question, and edges indicate permitted transi-
tions among such states. One of the graph’s vertices represents an initial state and
another represents a goal state of the problem. (There might be several vertices
of the latter kind.) Such a graph is called a state-space graph. Thus, the transfor-
mation just described reduces the problem to the question about a path from the
initial-state vertex to a goal-state vertex.
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FIGURE 6.18 State-space graph for the peasant, wolf, goat, and cabbage puzzle.

EXAMPLE Let us revisit the classic river-crossing puzzle that was included in
the exercises for Section 1.2. A peasant finds himself on a river bank with a wolf,
a goat, and a head of cabbage. He needs to transport all three to the other side
of the river in his boat. However, the boat has room only for the peasant himself
and one other item (either the wolf, the goat, or the cabbage). In his absence, the
wolf would eat the goat, and the goat would eat the cabbage. Find a way for the
peasant to solve his problem or prove that it has no solution.

The state-space graph for this problem is given in Figure 6.18. Its vertices are
labeled to indicate the states they represent: P, w, g, c stand for the peasant, the
wolf, the goat, and the cabbage, respectively; the two bars | | denote the river;
for convenience, we also label the edges by indicating the boat’s occupants for
each crossing. In terms of this graph, we are interested in finding a path from the
initial-state vertex labeled Pwgc| | to the final-state vertex labeled | |Pwgc.

It is easy to see that there exist two distinct simple paths from the initial-
state vertex to the final state vertex (what are they?). If we find them by applying
breadth-first search, we get a formal proof that these paths have the smallest
number of edges possible. Hence, this puzzle has two solutions requiring seven
river crossings, which is the minimum number of crossings needed.

Our success in solving this simple puzzle should not lead you to believe that
generating and investigating state-space graphs is always a straightforward task.
To get a better appreciation of them, consult books on artificial intelligence (AI),
the branch of computer science in which state-space graphs are a principal subject.
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In this book, we deal with an important special case of state-space graphs in
Sections 12.1 and 12.2.

Exercises 6.6

1. a. Prove the equality

lcm(m, n) = m . n

gcd(m, n)

that underlies the algorithm for computing lcm(m, n).

b. Euclid’s algorithm is known to be in O(log n). If it is the algorithm that is
used for computing gcd(m, n), what is the efficiency of the algorithm for
computing lcm(m, n)?

2. You are given a list of numbers for which you need to construct a min-heap.
(A min-heap is a complete binary tree in which every key is less than or equal
to the keys in its children.) How would you use an algorithm for constructing
a max-heap (a heap as defined in Section 6.4) to construct a min-heap?

3. Prove that the number of different paths of length k > 0 from the ith vertex to
the j th vertex in a graph (undirected or directed) equals the (i, j)th element
of Ak where A is the adjacency matrix of the graph.

4. a. Design an algorithm with a time efficiency better than cubic for checking
whether a graph with n vertices contains a cycle of length 3 [Man89].

b. Consider the following algorithm for the same problem. Starting at an arbi-
trary vertex, traverse the graph by depth-first search and check whether its
depth-first search forest has a vertex with a back edge leading to its grand-
parent. If it does, the graph contains a triangle; if it does not, the graph
does not contain a triangle as its subgraph. Is this algorithm correct?

5. Given n > 3 points P1 = (x1, y1), . . . , Pn = (xn, yn) in the coordinate plane,
design an algorithm to check whether all the points lie within a triangle with
its vertices at three of the points given. (You can either design an algorithm
from scratch or reduce the problem to another one with a known algorithm.)

6. Consider the problem of finding, for a given positive integer n, the pair of
integers whose sum is n and whose product is as large as possible. Design an
efficient algorithm for this problem and indicate its efficiency class.

7. The assignment problem introduced in Section 3.4 can be stated as follows:
There are n people who need to be assigned to execute n jobs, one person
per job. (That is, each person is assigned to exactly one job and each job is
assigned to exactly one person.) The cost that would accrue if the ith person is
assigned to the j th job is a known quantity C[i, j ] for each pair i, j = 1, . . . , n.
The problem is to assign the people to the jobs to minimize the total cost of
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the assignment. Express the assignment problem as a 0-1 linear programming
problem.

8. Solve the instance of the linear programming problem given in Section 6.6:

maximize 0.10x + 0.07y + 0.03z

subject to x + y + z = 100

x ≤ 1
3y

z ≥ 0.25(x + y)

x ≥ 0, y ≥ 0, z ≥ 0.

9. The graph-coloring problem is usually stated as the vertex-coloring prob-
lem: Assign the smallest number of colors to vertices of a given graph so
that no two adjacent vertices are the same color. Consider the edge-coloring
problem: Assign the smallest number of colors possible to edges of a given
graph so that no two edges with the same endpoint are the same color. Ex-
plain how the edge-coloring problem can be reduced to a vertex-coloring
problem.

10. Consider the two-dimensional post office location problem: given n points
(x1, y1), . . . , (xn, yn) in the Cartesian plane, find a location (x, y) for a post
office that minimizes 1

n

∑n
i=1(|xi − x| + |yi − y|), the average Manhattan dis-

tance from the post office to these points. Explain how this problem can be
efficiently solved by the problem reduction technique, provided the post office
does not have to be located at one of the input points.

11. Jealous husbands There are n ≥ 2 married couples who need to cross a
river. They have a boat that can hold no more than two people at a time.
To complicate matters, all the husbands are jealous and will not agree on any
crossing procedure that would put a wife on the same bank of the river with
another woman’s husband without the wife’s husband being there too, even if
there are other people on the same bank. Can they cross the river under such
constraints?
a. Solve the problem for n = 2.

b. Solve the problem for n = 3, which is the classical version of this problem.

c. Does the problem have a solution for n ≥ 4? If it does, indicate how many
river crossings it will take; if it does not, explain why.

12. Double-n dominoes Dominoes are small rectangular tiles with dots called
spots or pips embossed at both halves of the tiles. A standard “double-six”
domino set has 28 tiles: one for each unordered pair of integers from (0, 0)
to (6, 6). In general, a “double-n” domino set would consist of domino tiles
for each unordered pair of integers from (0, 0) to (n, n). Determine all values
of n for which one constructs a ring made up of all the tiles in a double-n
domino set.



250 Transform-and-Conquer

SUMMARY

Transform-and-conquer is the fourth general algorithm design (and problem-
solving) strategy discussed in the book. It is, in fact, a group of techniques
based on the idea of transformation to a problem that is easier to solve.

There are three principal varieties of the transform-and-conquer strategy:
instance simplification, representation change, and problem reduction.

Instance simplification is transforming an instance of a problem to an instance
of the same problem with some special property that makes the problem
easier to solve. List presorting, Gaussian elimination, and rotations in AVL
trees are good examples of this strategy.

Representation change implies changing one representation of a problem’s
instance to another representation of the same instance. Examples discussed
in this chapter include representation of a set by a 2-3 tree, heaps and heapsort,
Horner’s rule for polynomial evaluation, and two binary exponentiation
algorithms.

Problem reduction calls for transforming a given problem to another problem
that can be solved by a known algorithm. Among examples of applying this
idea to algorithmic problem solving (see Section 6.6), reductions to linear
programming and reductions to graph problems are especially important.

Some examples used to illustrate transform-and-conquer happen to be very
important data structures and algorithms. They are: heaps and heapsort, AVL
and 2-3 trees, Gaussian elimination, and Horner’s rule.

A heap is an essentially complete binary tree with keys (one per node)
satisfying the parental dominance requirement. Though defined as binary
trees, heaps are normally implemented as arrays. Heaps are most important
for the efficient implementation of priority queues; they also underlie
heapsort.

Heapsort is a theoretically important sorting algorithm based on arranging
elements of an array in a heap and then successively removing the largest
element from a remaining heap. The algorithm’s running time is in �(n log n)

both in the worst case and in the average case; in addition, it is in-place.

AVL trees are binary search trees that are always balanced to the extent
possible for a binary tree. The balance is maintained by transformations of
four types called rotations. All basic operations on AVL trees are in O(log n);
it eliminates the bad worst-case efficiency of classic binary search trees.

2-3 trees achieve a perfect balance in a search tree by allowing a node to
contain up to two ordered keys and have up to three children. This idea can
be generalized to yield very important B-trees, discussed later in the book.
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Gaussian elimination—an algorithm for solving systems of linear equations—
is a principal algorithm in linear algebra. It solves a system by transforming it
to an equivalent system with an upper-triangular coefficient matrix, which is
easy to solve by back substitutions. Gaussian elimination requires about 1

3n3

multiplications.

Horner’s rule is an optimal algorithm for polynomial evaluation without
coefficient preprocessing. It requires only n multiplications and n additions
to evaluate an n-degree polynomial at a given point. Horner’s rule also has a
few useful byproducts, such as the synthetic division algorithm.

Two binary exponentiation algorithms for computing an are introduced in
Section 6.5. Both of them exploit the binary representation of the exponent
n, but they process it in the opposite directions: left to right and right to left.

Linear programming concerns optimizing a linear function of several vari-
ables subject to constraints in the form of linear equations and linear inequal-
ities. There are efficient algorithms capable of solving very large instances
of this problem with many thousands of variables and constraints, provided
the variables are not required to be integers. The latter, called integer linear
programming, constitute a much more difficult class of problems.
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7
Space and Time Trade-Offs

Things which matter most must never be at the mercy of things which
matter less.

—Johann Wolfgang von Göethe (1749–1832)

Space and time trade-offs in algorithm design are a well-known issue for both
theoreticians and practitioners of computing. Consider, as an example, the

problem of computing values of a function at many points in its domain. If it is
time that is at a premium, we can precompute the function’s values and store them
in a table. This is exactly what human computers had to do before the advent of
electronic computers, in the process burdening libraries with thick volumes of
mathematical tables. Though such tables have lost much of their appeal with the
widespread use of electronic computers, the underlying idea has proven to be quite
useful in the development of several important algorithms for other problems.
In somewhat more general terms, the idea is to preprocess the problem’s input,
in whole or in part, and store the additional information obtained to accelerate
solving the problem afterward. We call this approach input enhancement1 and
discuss the following algorithms based on it:

counting methods for sorting (Section 7.1)
Boyer-Moore algorithm for string matching and its simplified version sug-
gested by Horspool (Section 7.2)

The other type of technique that exploits space-for-time trade-offs simply uses
extra space to facilitate faster and/or more flexible access to the data. We call this
approach prestructuring. This name highlights two facets of this variation of the
space-for-time trade-off: some processing is done before a problem in question

1. The standard terms used synonymously for this technique are preprocessing and preconditioning.
Confusingly, these terms can also be applied to methods that use the idea of preprocessing but do not
use extra space (see Chapter 6). Thus, in order to avoid confusion, we use “input enhancement” as a
special name for the space-for-time trade-off technique being discussed here.

253
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is actually solved but, unlike the input-enhancement variety, it deals with access
structuring. We illustrate this approach by:

hashing (Section 7.3)
indexing with B-trees (Section 7.4)

There is one more algorithm design technique related to the space-for-time
trade-off idea: dynamic programming. This strategy is based on recording solu-
tions to overlapping subproblems of a given problem in a table from which a solu-
tion to the problem in question is then obtained. We discuss this well-developed
technique separately, in the next chapter of the book.

Two final comments about the interplay between time and space in algo-
rithm design need to be made. First, the two resources—time and space—do not
have to compete with each other in all design situations. In fact, they can align to
bring an algorithmic solution that minimizes both the running time and the space
consumed. Such a situation arises, in particular, when an algorithm uses a space-
efficient data structure to represent a problem’s input, which leads, in turn, to a
faster algorithm. Consider, as an example, the problem of traversing graphs. Re-
call that the time efficiency of the two principal traversal algorithms—depth-first
search and breadth-first search—depends on the data structure used for repre-
senting graphs: it is �(n2) for the adjacency matrix representation and �(n + m)

for the adjacency list representation, where n and m are the numbers of vertices
and edges, respectively. If input graphs are sparse, i.e., have few edges relative to
the number of vertices (say, m ∈ O(n)), the adjacency list representation may well
be more efficient from both the space and the running-time points of view. The
same situation arises in the manipulation of sparse matrices and sparse polynomi-
als: if the percentage of zeros in such objects is sufficiently high, we can save both
space and time by ignoring zeros in the objects’ representation and processing.

Second, one cannot discuss space-time trade-offs without mentioning the
hugely important area of data compression. Note, however, that in data compres-
sion, size reduction is the goal rather than a technique for solving another problem.
We discuss just one data compression algorithm, in the next chapter. The reader
interested in this topic will find a wealth of algorithms in such books as [Say05].

7.1 Sorting by Counting

As a first example of applying the input-enhancement technique, we discuss its
application to the sorting problem. One rather obvious idea is to count, for each
element of a list to be sorted, the total number of elements smaller than this
element and record the results in a table. These numbers will indicate the positions
of the elements in the sorted list: e.g., if the count is 10 for some element, it should
be in the 11th position (with index 10, if we start counting with 0) in the sorted
array. Thus, we will be able to sort the list by simply copying its elements to their
appropriate positions in a new, sorted list. This algorithm is called comparison-
counting sort (Figure 7.1).
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Array A[0..5]
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FIGURE 7.1 Example of sorting by comparison counting.

ALGORITHM ComparisonCountingSort(A[0..n − 1])

//Sorts an array by comparison counting
//Input: An array A[0..n − 1] of orderable elements
//Output: Array S[0..n − 1] of A’s elements sorted in nondecreasing order
for i ← 0 to n − 1 do Count[i] ← 0
for i ← 0 to n − 2 do

for j ← i + 1 to n − 1 do
if A[i] < A[j ]

Count[j ] ← Count[j ] + 1
else Count[i] ← Count[i] + 1

for i ← 0 to n − 1 do S[Count[i]] ← A[i]
return S

What is the time efficiency of this algorithm? It should be quadratic because
the algorithm considers all the different pairs of an n-element array. More formally,
the number of times its basic operation, the comparison A[i] < A[j ], is executed
is equal to the sum we have encountered several times already:

C(n) =
n−2∑
i=0

n−1∑
j=i+1

1 =
n−2∑
i=0

[(n − 1) − (i + 1) + 1] =
n−2∑
i=0

(n − 1 − i) = n(n − 1)
2

.

Thus, the algorithm makes the same number of key comparisons as selection sort
and in addition uses a linear amount of extra space. On the positive side, the
algorithm makes the minimum number of key moves possible, placing each of
them directly in their final position in a sorted array.

The counting idea does work productively in a situation in which elements
to be sorted belong to a known small set of values. Assume, for example, that
we have to sort a list whose values can be either 1 or 2. Rather than applying a
general sorting algorithm, we should be able to take advantage of this additional
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information about values to be sorted. Indeed, we can scan the list to compute
the number of 1’s and the number of 2’s in it and then, on the second pass,
simply make the appropriate number of the first elements equal to 1 and the
remaining elements equal to 2. More generally, if element values are integers
between some lower bound l and upper bound u, we can compute the frequency
of each of those values and store them in array F [0..u − l]. Then the first F [0]
positions in the sorted list must be filled with l, the next F [1] positions with l + 1,
and so on. All this can be done, of course, only if we can overwrite the given
elements.

Let us consider a more realistic situation of sorting a list of items with some
other information associated with their keys so that we cannot overwrite the list’s
elements. Then we can copy elements into a new array S[0..n − 1]to hold the sorted
list as follows. The elements of A whose values are equal to the lowest possible
value l are copied into the first F [0]elements of S, i.e., positions 0 through F [0]− 1;
the elements of value l + 1 are copied to positions from F [0] to (F [0] + F [1]) − 1;
and so on. Since such accumulated sums of frequencies are called a distribution
in statistics, the method itself is known as distribution counting.

EXAMPLE Consider sorting the array

13 11 12 13 12 12

whose values are known to come from the set {11, 12, 13} and should not be
overwritten in the process of sorting. The frequency and distribution arrays are
as follows:

Array values 11 12 13

Frequencies 1 3 2
Distribution values 1 4 6

Note that the distribution values indicate the proper positions for the last occur-
rences of their elements in the final sorted array. If we index array positions from 0
to n − 1, the distribution values must be reduced by 1 to get corresponding element
positions.

It is more convenient to process the input array right to left. For the example,
the last element is 12, and, since its distribution value is 4, we place this 12 in
position 4 − 1 = 3 of the array S that will hold the sorted list. Then we decrease
the 12’s distribution value by 1 and proceed to the next (from the right) element
in the given array. The entire processing of this example is depicted in Figure 7.2.
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D[0..2] S[0..5]
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FIGURE 7.2 Example of sorting by distribution counting. The distribution values being
decremented are shown in bold.

Here is pseudocode of this algorithm.

ALGORITHM DistributionCountingSort(A[0..n − 1], l, u)

//Sorts an array of integers from a limited range by distribution counting
//Input: An array A[0..n − 1] of integers between l and u (l ≤ u)

//Output: Array S[0..n − 1] of A’s elements sorted in nondecreasing order
for j ← 0 to u − l do D[j ] ← 0 //initialize frequencies
for i ← 0 to n − 1 do D[A[i] − l] ← D[A[i] − l] + 1 //compute frequencies
for j ← 1 to u − l do D[j ] ← D[j − 1] + D[j ] //reuse for distribution
for i ← n − 1 downto 0 do

j ← A[i] − l

S[D[j ] − 1] ← A[i]
D[j ] ← D[j ] − 1

return S

Assuming that the range of array values is fixed, this is obviously a linear
algorithm because it makes just two consecutive passes through its input array
A. This is a better time-efficiency class than that of the most efficient sorting
algorithms—mergesort, quicksort, and heapsort—we have encountered. It is im-
portant to remember, however, that this efficiency is obtained by exploiting the
specific nature of inputs for which sorting by distribution counting works, in addi-
tion to trading space for time.

Exercises 7.1

1. Is it possible to exchange numeric values of two variables, say, u and v, without
using any extra storage?

2. Will the comparison-counting algorithm work correctly for arrays with equal
values?

3. Assuming that the set of possible list values is {a, b, c, d}, sort the following
list in alphabetical order by the distribution-counting algorithm:

b, c, d, c, b, a, a, b.
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4. Is the distribution-counting algorithm stable?

5. Design a one-line algorithm for sorting any array of size n whose values are n

distinct integers from 1 to n.

6. The ancestry problem asks to determine whether a vertex u is an ancestor
of vertex v in a given binary (or, more generally, rooted ordered) tree of n

vertices. Design a O(n) input-enhancement algorithm that provides sufficient
information to solve this problem for any pair of the tree’s vertices in constant
time.

7. The following technique, known as virtual initialization, provides a time-
efficient way to initialize just some elements of a given array A[0..n − 1] so
that for each of its elements, we can say in constant time whether it has been
initialized and, if it has been, with which value. This is done by utilizing a
variable counter for the number of initialized elements in A and two auxiliary
arrays of the same size, say B[0..n − 1] and C[0..n − 1], defined as follows.
B[0], . . . , B[counter − 1] contain the indices of the elements of A that were
initialized: B[0]contains the index of the element initialized first, B[1]contains
the index of the element initialized second, etc. Furthermore, if A[i] was the
kth element (0 ≤ k ≤ counter − 1) to be initialized, C[i] contains k.

a. Sketch the state of arrays A[0..7], B[0..7], and C[0..7] after the three as-
signments

A[3] ← x; A[7] ← z; A[1] ← y.

b. In general, how can we check with this scheme whether A[i] has been
initialized and, if it has been, with which value?

8. Least distance sorting There are 10 Egyptian stone statues standing in a row
in an art gallery hall. A new curator wants to move them so that the statues
are ordered by their height. How should this be done to minimize the total
distance that the statues are moved? You may assume for simplicity that all
the statues have different heights. [Azi10]

9. a. Write a program for multiplying two sparse matrices, a p × q matrix A and
a q × r matrix B.

b. Write a program for multiplying two sparse polynomials p(x) and q(x) of
degrees m and n, respectively.

10. Is it a good idea to write a program that plays the classic game of tic-tac-toe
with the human user by storing all possible positions on the game’s 3 × 3 board
along with the best move for each of them?

7.2 Input Enhancement in String Matching

In this section, we see how the technique of input enhancement can be applied
to the problem of string matching. Recall that the problem of string matching
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requires finding an occurrence of a given string of m characters called the pattern
in a longer string of n characters called the text. We discussed the brute-force
algorithm for this problem in Section 3.2: it simply matches corresponding pairs
of characters in the pattern and the text left to right and, if a mismatch occurs,
shifts the pattern one position to the right for the next trial. Since the maximum
number of such trials is n − m + 1 and, in the worst case, m comparisons need to
be made on each of them, the worst-case efficiency of the brute-force algorithm is
in the O(nm) class. On average, however, we should expect just a few comparisons
before a pattern’s shift, and for random natural-language texts, the average-case
efficiency indeed turns out to be in O(n + m).

Several faster algorithms have been discovered. Most of them exploit the
input-enhancement idea: preprocess the pattern to get some information about
it, store this information in a table, and then use this information during an actual
search for the pattern in a given text. This is exactly the idea behind the two best-
known algorithms of this type: the Knuth-Morris-Pratt algorithm [Knu77] and the
Boyer-Moore algorithm [Boy77].

The principal difference between these two algorithms lies in the way they
compare characters of a pattern with their counterparts in a text: the Knuth-
Morris-Pratt algorithm does it left to right, whereas the Boyer-Moore algorithm
does it right to left. Since the latter idea leads to simpler algorithms, it is the
only one that we will pursue here. (Note that the Boyer-Moore algorithm starts
by aligning the pattern against the beginning characters of the text; if the first
trial fails, it shifts the pattern to the right. It is comparisons within a trial that the
algorithm does right to left, starting with the last character in the pattern.)

Although the underlying idea of the Boyer-Moore algorithm is simple, its
actual implementation in a working method is less so. Therefore, we start our
discussion with a simplified version of the Boyer-Moore algorithm suggested by
R. Horspool [Hor80]. In addition to being simpler, Horspool’s algorithm is not
necessarily less efficient than the Boyer-Moore algorithm on random strings.

Horspool’s Algorithm

Consider, as an example, searching for the pattern BARBER in some text:

s0 . . . c . . . sn−1
B A R B E R

Starting with the last R of the pattern and moving right to left, we compare the
corresponding pairs of characters in the pattern and the text. If all the pattern’s
characters match successfully, a matching substring is found. Then the search
can be either stopped altogether or continued if another occurrence of the same
pattern is desired.

If a mismatch occurs, we need to shift the pattern to the right. Clearly, we
would like to make as large a shift as possible without risking the possibility of
missing a matching substring in the text. Horspool’s algorithm determines the size
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of such a shift by looking at the character c of the text that is aligned against the
last character of the pattern. This is the case even if character c itself matches its
counterpart in the pattern.

In general, the following four possibilities can occur.

Case 1 If there are no c’s in the pattern—e.g., c is letter S in our example—
we can safely shift the pattern by its entire length (if we shift less, some character
of the pattern would be aligned against the text’s character c that is known not to
be in the pattern):

s0 . . . S . . . sn−1
� ‖

B A R B E R

B A R B E R

Case 2 If there are occurrences of character c in the pattern but it is not the last
one there—e.g., c is letter B in our example—the shift should align the rightmost
occurrence of c in the pattern with the c in the text:

s0 . . . B . . . sn−1
� ‖

B A R B E R

B A R B E R

Case 3 If c happens to be the last character in the pattern but there are no c’s
among its other m − 1 characters—e.g., c is letter R in our example—the situation
is similar to that of Case 1 and the pattern should be shifted by the entire pattern’s
length m:

s0 . . . M E R . . . sn−1
� ‖ ‖ ‖

L E A D E R

L E A D E R

Case 4 Finally, if c happens to be the last character in the pattern and there
are other c’s among its first m − 1 characters—e.g., c is letter R in our example—
the situation is similar to that of Case 2 and the rightmost occurrence of c among
the first m − 1 characters in the pattern should be aligned with the text’s c:

s0 . . . A R . . . sn−1
� ‖ ‖

R E O R D E R

R E O R D E R

These examples clearly demonstrate that right-to-left character comparisons
can lead to farther shifts of the pattern than the shifts by only one position
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always made by the brute-force algorithm. However, if such an algorithm had
to check all the characters of the pattern on every trial, it would lose much
of this superiority. Fortunately, the idea of input enhancement makes repetitive
comparisons unnecessary. We can precompute shift sizes and store them in a table.
The table will be indexed by all possible characters that can be encountered in a
text, including, for natural language texts, the space, punctuation symbols, and
other special characters. (Note that no other information about the text in which
eventual searching will be done is required.) The table’s entries will indicate the
shift sizes computed by the formula

t (c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the pattern’s length m,
if c is not among the first m − 1 characters of the pattern;

the distance from the rightmost c among the first m − 1 characters
of the pattern to its last character, otherwise.

(7.1)

For example, for the patternBARBER, all the table’s entries will be equal to 6, except
for the entries for E, B, R, and A, which will be 1, 2, 3, and 4, respectively.

Here is a simple algorithm for computing the shift table entries. Initialize all
the entries to the pattern’s length m and scan the pattern left to right repeating the
following step m − 1 times: for the j th character of the pattern (0 ≤ j ≤ m − 2),
overwrite its entry in the table with m − 1 − j , which is the character’s distance to
the last character of the pattern. Note that since the algorithm scans the pattern
from left to right, the last overwrite will happen for the character’s rightmost
occurrence—exactly as we would like it to be.

ALGORITHM ShiftTable(P [0..m − 1])

//Fills the shift table used by Horspool’s and Boyer-Moore algorithms
//Input: Pattern P [0..m − 1] and an alphabet of possible characters
//Output: Table[0..size − 1] indexed by the alphabet’s characters and
// filled with shift sizes computed by formula (7.1)
for i ← 0 to size − 1 do Table[i] ← m

for j ← 0 to m − 2 do Table[P [j ]] ← m − 1 − j

return Table

Now, we can summarize the algorithm as follows:

Horspool’s algorithm

Step 1 For a given pattern of length m and the alphabet used in both the
pattern and text, construct the shift table as described above.

Step 2 Align the pattern against the beginning of the text.
Step 3 Repeat the following until either a matching substring is found or the

pattern reaches beyond the last character of the text. Starting with the
last character in the pattern, compare the corresponding characters in
the pattern and text until either all m characters are matched (then



262 Space and Time Trade-Offs

stop) or a mismatching pair is encountered. In the latter case, retrieve
the entry t (c) from the c’s column of the shift table where c is the text’s
character currently aligned against the last character of the pattern,
and shift the pattern by t (c) characters to the right along the text.

Here is pseudocode of Horspool’s algorithm.

ALGORITHM HorspoolMatching(P [0..m − 1], T [0..n − 1])

//Implements Horspool’s algorithm for string matching
//Input: Pattern P [0..m − 1] and text T [0..n − 1]
//Output: The index of the left end of the first matching substring
// or −1 if there are no matches
ShiftTable(P [0..m − 1]) //generate Table of shifts
i ← m − 1 //position of the pattern’s right end
while i ≤ n − 1 do

k ← 0 //number of matched characters
while k ≤ m − 1 and P [m − 1 − k] = T [i − k] do

k ← k + 1
if k = m

return i − m + 1
else i ← i + Table[T [i]]

return −1

EXAMPLE As an example of a complete application of Horspool’s algorithm,
consider searching for the pattern BARBER in a text that comprises English letters
and spaces (denoted by underscores). The shift table, as we mentioned, is filled as
follows:

character c A B C D E F . . . R . . . Z _

shift t (c) 4 2 6 6 1 6 6 3 6 6 6

The actual search in a particular text proceeds as follows:

J I M _ S A W _ M E _ I N _ A _ B A R B E R S H O P

B A R B E R B A R B E R

B A R B E R B A R B E R

B A R B E R B A R B E R

A simple example can demonstrate that the worst-case efficiency of Hor-
spool’s algorithm is in O(nm) (Problem 4 in this section’s exercises). But for
random texts, it is in �(n), and, although in the same efficiency class, Horspool’s
algorithm is obviously faster on average than the brute-force algorithm. In fact,
as mentioned, it is often at least as efficient as its more sophisticated predecessor
discovered by R. Boyer and J. Moore.
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Boyer-Moore Algorithm

Now we outline the Boyer-Moore algorithm itself. If the first comparison of the
rightmost character in the pattern with the corresponding character c in the text
fails, the algorithm does exactly the same thing as Horspool’s algorithm. Namely,
it shifts the pattern to the right by the number of characters retrieved from the
table precomputed as explained earlier.

The two algorithms act differently, however, after some positive number k

(0 < k < m) of the pattern’s characters are matched successfully before a mismatch
is encountered:

s0 . . . c si−k+1 . . . si . . . sn−1 text
� ‖ ‖ ‖

p0 . . . pm−k−1 pm−k . . . pm−1 pattern

In this situation, the Boyer-Moore algorithm determines the shift size by consid-
ering two quantities. The first one is guided by the text’s character c that caused
a mismatch with its counterpart in the pattern. Accordingly, it is called the bad-
symbol shift. The reasoning behind this shift is the reasoning we used in Hor-
spool’s algorithm. If c is not in the pattern, we shift the pattern to just pass this
c in the text. Conveniently, the size of this shift can be computed by the formula
t1(c) − k where t1(c) is the entry in the precomputed table used by Horspool’s
algorithm (see above) and k is the number of matched characters:

s0 . . . c si−k+1 . . . si . . . sn−1 text
� ‖ ‖ ‖

p0 . . . pm−k−1 pm−k . . . pm−1 pattern
p0 . . . pm−1

For example, if we search for the pattern BARBER in some text and match the last
two characters before failing on letter S in the text, we can shift the pattern by
t1(S) − 2 = 6 − 2 = 4 positions:

s0 . . . S E R . . . sn−1
� ‖ ‖ ‖

B A R B E R

B A R B E R

The same formula can also be used when the mismatching character c of the
text occurs in the pattern, provided t1(c) − k > 0. For example, if we search for the
pattern BARBER in some text and match the last two characters before failing on
letter A, we can shift the pattern by t1(A) − 2 = 4 − 2 = 2 positions:

s0 . . . A E R . . . sn−1
� ‖ ‖ ‖

B A R B E R

B A R B E R
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If t1(c) − k ≤ 0, we obviously do not want to shift the pattern by 0 or a negative
number of positions. Rather, we can fall back on the brute-force thinking and
simply shift the pattern by one position to the right.

To summarize, the bad-symbol shift d1 is computed by the Boyer-Moore
algorithm either as t1(c) − k if this quantity is positive and as 1 if it is negative
or zero. This can be expressed by the following compact formula:

d1 = max{t1(c) − k, 1}. (7.2)

The second type of shift is guided by a successful match of the last k > 0
characters of the pattern. We refer to the ending portion of the pattern as its suffix
of size k and denote it suff (k). Accordingly, we call this type of shift the good-suffix
shift. We now apply the reasoning that guided us in filling the bad-symbol shift
table, which was based on a single alphabet character c, to the pattern’s suffixes
of sizes 1, . . . , m − 1 to fill in the good-suffix shift table.

Let us first consider the case when there is another occurrence of suff (k) in
the pattern or, to be more accurate, there is another occurrence of suff (k) not
preceded by the same character as in its rightmost occurrence. (It would be useless
to shift the pattern to match another occurrence of suff (k) preceded by the same
character because this would simply repeat a failed trial.) In this case, we can shift
the pattern by the distance d2 between such a second rightmost occurrence (not
preceded by the same character as in the rightmost occurrence) of suff (k) and its
rightmost occurrence. For example, for the pattern ABCBAB, these distances for
k = 1 and 2 will be 2 and 4, respectively:

k pattern d2

1 ABCBAB 2
2 ABCBAB 4

What is to be done if there is no other occurrence of suff (k) not preceded by
the same character as in its rightmost occurrence? In most cases, we can shift the
pattern by its entire length m. For example, for the pattern DBCBAB and k = 3, we
can shift the pattern by its entire length of 6 characters:

s0 . . . c B A B . . . sn−1
� ‖ ‖ ‖ ‖

D B C B A B

D B C B A B

Unfortunately, shifting the pattern by its entire length when there is no other
occurrence of suff (k) not preceded by the same character as in its rightmost
occurrence is not always correct. For example, for the pattern ABCBAB and k = 3,
shifting by 6 could miss a matching substring that starts with the text’s AB aligned
with the last two characters of the pattern:
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s0 . . . c B A B C B A B . . . sn−1
� ‖ ‖ ‖ ‖

A B C B A B

A B C B A B

Note that the shift by 6 is correct for the pattern DBCBAB but not for ABCBAB,
because the latter pattern has the same substring AB as its prefix (beginning part
of the pattern) and as its suffix (ending part of the pattern). To avoid such an
erroneous shift based on a suffix of size k, for which there is no other occurrence
in the pattern not preceded by the same character as in its rightmost occurrence,
we need to find the longest prefix of size l < k that matches the suffix of the same
size l. If such a prefix exists, the shift size d2 is computed as the distance between
this prefix and the corresponding suffix; otherwise, d2 is set to the pattern’s length
m. As an example, here is the complete list of the d2 values—the good-suffix table
of the Boyer-Moore algorithm—for the pattern ABCBAB:

k pattern d2

1 ABCBAB 2
2 ABCBAB 4
3 ABCBAB 4
4 ABCBAB 4
5 ABCBAB 4

Now we are prepared to summarize the Boyer-Moore algorithm in its entirety.

The Boyer-Moore algorithm

Step 1 For a given pattern and the alphabet used in both the pattern and the
text, construct the bad-symbol shift table as described earlier.

Step 2 Using the pattern, construct the good-suffix shift table as described
earlier.

Step 3 Align the pattern against the beginning of the text.
Step 4 Repeat the following step until either a matching substring is found or

the pattern reaches beyond the last character of the text. Starting with
the last character in the pattern, compare the corresponding characters
in the pattern and the text until either all m character pairs are matched
(then stop) or a mismatching pair is encountered after k ≥ 0 character
pairs are matched successfully. In the latter case, retrieve the entry
t1(c) from the c’s column of the bad-symbol table where c is the text’s
mismatched character. If k > 0, also retrieve the corresponding d2
entry from the good-suffix table. Shift the pattern to the right by the
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number of positions computed by the formula

d =
{

d1 if k = 0,
max{d1, d2} if k > 0,

(7.3)

where d1 = max{t1(c) − k, 1}.
Shifting by the maximum of the two available shifts when k > 0 is quite log-

ical. The two shifts are based on the observations—the first one about a text’s
mismatched character, and the second one about a matched group of the pattern’s
rightmost characters—that imply that shifting by less than d1 and d2 characters, re-
spectively, cannot lead to aligning the pattern with a matching substring in the text.
Since we are interested in shifting the pattern as far as possible without missing a
possible matching substring, we take the maximum of these two numbers.

EXAMPLE As a complete example, let us consider searching for the pattern
BAOBAB in a text made of English letters and spaces. The bad-symbol table looks
as follows:

c A B C D . . . O . . . Z _

t1(c) 1 2 6 6 6 3 6 6 6

The good-suffix table is filled as follows:

k pattern d2

1 BAOBAB 2
2 BAOBAB 5
3 BAOBAB 5
4 BAOBAB 5
5 BAOBAB 5

The actual search for this pattern in the text given in Figure 7.3 proceeds as
follows. After the last B of the pattern fails to match its counterpart K in the text,
the algorithm retrieves t1(K) = 6 from the bad-symbol table and shifts the pat-
tern by d1 = max{t1(K) − 0, 1} = 6 positions to the right. The new try successfully
matches two pairs of characters. After the failure of the third comparison on the
space character in the text, the algorithm retrieves t1( ) = 6 from the bad-symbol
table and d2 = 5 from the good-suffix table to shift the pattern by max{d1, d2} =
max{6 − 2, 5} = 5. Note that on this iteration it is the good-suffix rule that leads
to a farther shift of the pattern.

The next try successfully matches just one pair of B’s. After the failure of
the next comparison on the space character in the text, the algorithm retrieves
t1( ) = 6 from the bad-symbol table and d2 = 2 from the good-suffix table to shift
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B E S S _ K N E W _ A B O U T _ B A O B A B S

B A O B A B

d1 = t1(K) − 0 = 6 B A O B A B

d1 = t1( ) − 2 = 4 B A O B A B

d2 = 5 d1 = t1( ) − 1 = 5

d = max{4, 5} = 5 d2 = 2

d = max{5, 2} = 5

B A O B A B

FIGURE 7.3 Example of string matching with the Boyer-Moore algorithm.

the pattern by max{d1,d2} = max{6 − 1, 2} = 5. Note that on this iteration it is the
bad-symbol rule that leads to a farther shift of the pattern. The next try finds a
matching substring in the text after successfully matching all six characters of the
pattern with their counterparts in the text.

When searching for the first occurrence of the pattern, the worst-case effi-
ciency of the Boyer-Moore algorithm is known to be linear. Though this algorithm
runs very fast, especially on large alphabets (relative to the length of the pattern),
many people prefer its simplified versions, such as Horspool’s algorithm, when
dealing with natural-language–like strings.

Exercises 7.2

1. Apply Horspool’s algorithm to search for the pattern BAOBAB in the text

BESS KNEW ABOUT BAOBABS

2. Consider the problem of searching for genes in DNA sequences using Hor-
spool’s algorithm. A DNA sequence is represented by a text on the alphabet
{A, C, G, T}, and the gene or gene segment is the pattern.
a. Construct the shift table for the following gene segment of your chromo-

some 10:

TCCTATTCTT

b. Apply Horspool’s algorithm to locate the above pattern in the following
DNA sequence:

TTATAGATCTCGTATTCTTTTATAGATCTCCTATTCTT
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3. How many character comparisons will be made by Horspool’s algorithm in
searching for each of the following patterns in the binary text of 1000 zeros?

a. 00001 b. 10000 c. 01010

4. For searching in a text of length n for a pattern of length m (n ≥ m) with
Horspool’s algorithm, give an example of

a. worst-case input. b. best-case input.

5. Is it possible for Horspool’s algorithm to make more character comparisons
than the brute-force algorithm would make in searching for the same pattern
in the same text?

6. If Horspool’s algorithm discovers a matching substring, how large a shift
should it make to search for a next possible match?

7. How many character comparisons will the Boyer-Moore algorithm make in
searching for each of the following patterns in the binary text of 1000 zeros?

a. 00001 b. 10000 c. 01010

8. a. Would the Boyer-Moore algorithm work correctly with just the bad-symbol
table to guide pattern shifts?

b. Would the Boyer-Moore algorithm work correctly with just the good-suffix
table to guide pattern shifts?

9. a. If the last characters of a pattern and its counterpart in the text do match,
does Horspool’s algorithm have to check other characters right to left, or
can it check them left to right too?

b. Answer the same question for the Boyer-Moore algorithm.

10. Implement Horspool’s algorithm, the Boyer-Moore algorithm, and the brute-
force algorithm of Section 3.2 in the language of your choice and run an
experiment to compare their efficiencies for matching
a. random binary patterns in random binary texts.

b. random natural-language patterns in natural-language texts.

11. You are given two strings S and T , each n characters long. You have to
establish whether one of them is a right cyclic shift of the other. For example,
PLEA is a right cyclic shift of LEAP, and vice versa. (Formally, T is a right cyclic
shift of S if T can be obtained by concatenating the (n − i)-character suffix of
S and the i-character prefix of S for some 1 ≤ i ≤ n.)
a. Design a space-efficient algorithm for the task. Indicate the space and time

efficiencies of your algorithm.

b. Design a time-efficient algorithm for the task. Indicate the time and space
efficiencies of your algorithm.
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7.3 Hashing

In this section, we consider a very efficient way to implement dictionaries. Recall
that a dictionary is an abstract data type, namely, a set with the operations of
searching (lookup), insertion, and deletion defined on its elements. The elements
of this set can be of an arbitrary nature: numbers, characters of some alphabet,
character strings, and so on. In practice, the most important case is that of records
(student records in a school, citizen records in a governmental office, book records
in a library).

Typically, records comprise several fields, each responsible for keeping a
particular type of information about an entity the record represents. For example,
a student record may contain fields for the student’s ID, name, date of birth, sex,
home address, major, and so on. Among record fields there is usually at least one
called a key that is used for identifying entities represented by the records (e.g.,
the student’s ID). In the discussion below, we assume that we have to implement
a dictionary of n records with keys K1, K2, . . . , Kn.

Hashing is based on the idea of distributing keys among a one-dimensional
array H [0..m − 1] called a hash table. The distribution is done by computing, for
each of the keys, the value of some predefined function h called the hash function.
This function assigns an integer between 0 and m − 1, called the hash address, to
a key.

For example, if keys are nonnegative integers, a hash function can be of
the form h(K) = K mod m; obviously, the remainder of division by m is always
between 0 and m − 1. If keys are letters of some alphabet, we can first assign a letter
its position in the alphabet, denoted here ord(K), and then apply the same kind
of a function used for integers. Finally, if K is a character string c0c1 . . . cs−1, we
can use, as a very unsophisticated option, (

∑s−1
i=0 ord(ci)) mod m. A better option

is to compute h(K) as follows:2

h ← 0; for i ← 0 to s − 1 do h ← (h ∗ C + ord(ci)) mod m,

where C is a constant larger than every ord(ci).

In general, a hash function needs to satisfy somewhat conflicting require-
ments:

A hash table’s size should not be excessively large compared to the number of
keys, but it should be sufficient to not jeopardize the implementation’s time
efficiency (see below).
A hash function needs to distribute keys among the cells of the hash table as
evenly as possible. (This requirement makes it desirable, for most applications,
to have a hash function dependent on all bits of a key, not just some of them.)
A hash function has to be easy to compute.

2. This can be obtained by treating ord(ci) as digits of a number in the C-based system, computing its
decimal value by Horner’s rule, and finding the remainder of the number after dividing it by m.
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Ki Kj

m –10 b
.      .      ..      .      .

FIGURE 7.4 Collision of two keys in hashing: h(Ki) = h(Kj).

Obviously, if we choose a hash table’s size m to be smaller than the number
of keys n, we will get collisions—a phenomenon of two (or more) keys being
hashed into the same cell of the hash table (Figure 7.4). But collisions should be
expected even if m is considerably larger than n (see Problem 5 in this section’s
exercises). In fact, in the worst case, all the keys could be hashed to the same cell
of the hash table. Fortunately, with an appropriately chosen hash table size and a
good hash function, this situation happens very rarely. Still, every hashing scheme
must have a collision resolution mechanism. This mechanism is different in the
two principal versions of hashing: open hashing (also called separate chaining)
and closed hashing (also called open addressing).

Open Hashing (Separate Chaining)

In open hashing, keys are stored in linked lists attached to cells of a hash table.
Each list contains all the keys hashed to its cell. Consider, as an example, the
following list of words:

A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED.

As a hash function, we will use the simple function for strings mentioned above,
i.e., we will add the positions of a word’s letters in the alphabet and compute the
sum’s remainder after division by 13.

We start with the empty table. The first key is the word A; its hash value is
h(A) = 1 mod 13 = 1. The second key—the word FOOL—is installed in the ninth
cell since (6 + 15 + 15 + 12) mod 13 = 9, and so on. The final result of this process
is given in Figure 7.5; note a collision of the keys ARE and SOON because h(ARE) =
(1 + 18 + 5) mod 13 = 11 and h(SOON) = (19 + 15 + 15 + 14) mod 13 = 11.

How do we search in a dictionary implemented as such a table of linked lists?
We do this by simply applying to a search key the same procedure that was used
for creating the table. To illustrate, if we want to search for the key KID in the hash
table of Figure 7.5, we first compute the value of the same hash function for the
key: h(KID) = 11. Since the list attached to cell 11 is not empty, its linked list may
contain the search key. But because of possible collisions, we cannot tell whether
this is the case until we traverse this linked list. After comparing the string KID first
with the string ARE and then with the string SOON, we end up with an unsuccessful
search.

In general, the efficiency of searching depends on the lengths of the linked
lists, which, in turn, depend on the dictionary and table sizes, as well as the quality
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keys

hash addresses 1 9 6 10 7 11 11 12

11 12109876543210

A FOOL

FOOLMONEYANDA HIS ARE

SOON

PARTED

AND HIS MONEY ARE SOON PARTED

↓ ↓ ↓ ↓ ↓ ↓

↓

↓

FIGURE 7.5 Example of a hash table construction with separate chaining.

of the hash function. If the hash function distributes n keys among m cells of the
hash table about evenly, each list will be about n/m keys long. The ratio α = n/m,
called the load factor of the hash table, plays a crucial role in the efficiency of
hashing. In particular, the average number of pointers (chain links) inspected in
successful searches, S, and unsuccessful searches, U, turns out to be

S ≈ 1 + α

2
and U = α, (7.4)

respectively, under the standard assumptions of searching for a randomly selected
element and a hash function distributing keys uniformly among the table’s cells.
These results are quite natural. Indeed, they are almost identical to searching
sequentially in a linked list; what we have gained by hashing is a reduction in
average list size by a factor of m, the size of the hash table.

Normally, we want the load factor to be not far from 1. Having it too small
would imply a lot of empty lists and hence inefficient use of space; having it too
large would mean longer linked lists and hence longer search times. But if we
do have the load factor around 1, we have an amazingly efficient scheme that
makes it possible to search for a given key for, on average, the price of one or
two comparisons! True, in addition to comparisons, we need to spend time on
computing the value of the hash function for a search key, but it is a constant-time
operation, independent from n and m. Note that we are getting this remarkable
efficiency not only as a result of the method’s ingenuity but also at the expense of
extra space.

The two other dictionary operations—insertion and deletion—are almost
identical to searching. Insertions are normally done at the end of a list (but see
Problem 6 in this section’s exercises for a possible modification of this rule).
Deletion is performed by searching for a key to be deleted and then removing
it from its list. Hence, the efficiency of these operations is identical to that of
searching, and they are all �(1) in the average case if the number of keys n is
about equal to the hash table’s size m.
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Closed Hashing (Open Addressing)

In closed hashing, all keys are stored in the hash table itself without the use
of linked lists. (Of course, this implies that the table size m must be at least as
large as the number of keys n.) Different strategies can be employed for collision
resolution. The simplest one—called linear probing—checks the cell following
the one where the collision occurs. If that cell is empty, the new key is installed
there; if the next cell is already occupied, the availability of that cell’s immediate
successor is checked, and so on. Note that if the end of the hash table is reached,
the search is wrapped to the beginning of the table; i.e., it is treated as a circular
array. This method is illustrated in Figure 7.6 with the same word list and hash
function used above to illustrate separate chaining.

To search for a given key K, we start by computing h(K) where h is the hash
function used in the table construction. If the cell h(K) is empty, the search is
unsuccessful. If the cell is not empty, we must compare K with the cell’s occupant:
if they are equal, we have found a matching key; if they are not, we compare K

with a key in the next cell and continue in this manner until we encounter either
a matching key (a successful search) or an empty cell (unsuccessful search). For
example, if we search for the word LIT in the table of Figure 7.6, we will get h(LIT)

= (12 + 9 + 20) mod 13 = 2 and, since cell 2 is empty, we can stop immediately.
However, if we search for KID with h(KID) = (11 + 9 + 4) mod 13 = 11, we will
have to compare KID with ARE, SOON, PARTED, and A before we can declare the
search unsuccessful.

Although the search and insertion operations are straightforward for this
version of hashing, deletion is not. For example, if we simply delete the key ARE
from the last state of the hash table in Figure 7.6, we will be unable to find the key
SOON afterward. Indeed, after computing h(SOON) = 11, the algorithm would find
this location empty and report the unsuccessful search result. A simple solution

FOOL

FOOL

FOOL

FOOL

FOOL

FOOL

FOOL

MONEY

MONEY

MONEY

MONEY

AND

AND

AND

AND

AND

AND

A

A

A

A

A

A

A

A

HIS

HIS

HIS

HIS

HIS

ARE

ARE

ARE

SOON

SOONPARTED

keys

hash addresses 1 9 6 10 7 11 11 12

11 12109876543210

A FOOL AND HIS MONEY ARE SOON PARTED

FIGURE 7.6 Example of a hash table construction with linear probing.
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is to use “lazy deletion,” i.e., to mark previously occupied locations by a special
symbol to distinguish them from locations that have not been occupied.

The mathematical analysis of linear probing is a much more difficult problem
than that of separate chaining.3 The simplified versions of these results state that
the average number of times the algorithm must access the hash table with the
load factor α in successful and unsuccessful searches is, respectively,

S ≈ 1
2
(1 + 1

1 − α
) and U ≈ 1

2
(1 + 1

(1 − α)2
) (7.5)

(and the accuracy of these approximations increases with larger sizes of the hash
table). These numbers are surprisingly small even for densely populated tables,
i.e., for large percentage values of α:

α 1
2 (1 + 1

1−α
) 1

2 (1 + 1
(1−α)2 )

50% 1.5 2.5
75% 2.5 8.5
90% 5.5 50.5

Still, as the hash table gets closer to being full, the performance of linear prob-
ing deteriorates because of a phenomenon called clustering. A cluster in linear
probing is a sequence of contiguously occupied cells (with a possible wrapping).
For example, the final state of the hash table of Figure 7.6 has two clusters. Clus-
ters are bad news in hashing because they make the dictionary operations less
efficient. As clusters become larger, the probability that a new element will be
attached to a cluster increases; in addition, large clusters increase the probabil-
ity that two clusters will coalesce after a new key’s insertion, causing even more
clustering.

Several other collision resolution strategies have been suggested to alleviate
this problem. One of the most important is double hashing. Under this scheme, we
use another hash function, s(K), to determine a fixed increment for the probing
sequence to be used after a collision at location l = h(K):

(l + s(K)) mod m, (l + 2s(K)) mod m, . . . . (7.6)

To guarantee that every location in the table is probed by sequence (7.6), the incre-
ment s(k) and the table size m must be relatively prime, i.e., their only common
divisor must be 1. (This condition is satisfied automatically if m itself is prime.)
Some functions recommended in the literature are s(k) = m − 2 − k mod (m − 2)

and s(k) = 8 − (k mod 8) for small tables and s(k) = k mod 97 + 1 for larger ones.

3. This problem was solved in 1962 by a young graduate student in mathematics named Donald E.
Knuth. Knuth went on to become one of the most important computer scientists of our time. His
multivolume treatise The Art of Computer Programming [KnuI, KnuII, KnuIII, KnuIV] remains the
most comprehensive and influential book on algorithmics ever published.
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Mathematical analysis of double hashing has proved to be quite difficult. Some
partial results and considerable practical experience with the method suggest that
with good hashing functions—both primary and secondary—double hashing is su-
perior to linear probing. But its performance also deteriorates when the table gets
close to being full. A natural solution in such a situation is rehashing: the current
table is scanned, and all its keys are relocated into a larger table.

It is worthwhile to compare the main properties of hashing with balanced
search trees—its principal competitor for implementing dictionaries.

Asymptotic time efficiency With hashing, searching, insertion, and deletion
can be implemented to take �(1) time on the average but �(n) time in the very
unlikely worst case. For balanced search trees, the average time efficiencies
are �(log n) for both the average and worst cases.
Ordering preservation Unlike balanced search trees, hashing does not
assume existence of key ordering and usually does not preserve it. This makes
hashing less suitable for applications that need to iterate over the keys in or-
der or require range queries such as counting the number of keys between
some lower and upper bounds.

Since its discovery in the 1950s by IBM researchers, hashing has found many
important applications. In particular, it has become a standard technique for stor-
ing a symbol table—a table of a computer program’s symbols generated during
compilation. Hashing is quite handy for such AI applications as checking whether
positions generated by a chess-playing computer program have already been con-
sidered. With some modifications, it has also proved to be useful for storing very
large dictionaries on disks; this variation of hashing is called extendible hashing.
Since disk access is expensive compared with probes performed in the main mem-
ory, it is preferable to make many more probes than disk accesses. Accordingly, a
location computed by a hash function in extendible hashing indicates a disk ad-
dress of a bucket that can hold up to b keys. When a key’s bucket is identified,
all its keys are read into main memory and then searched for the key in question.
In the next section, we discuss B-trees, a principal alternative for storing large
dictionaries.

Exercises 7.3

1. For the input 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11
a. construct the open hash table.

b. find the largest number of key comparisons in a successful search in this
table.

c. find the average number of key comparisons in a successful search in this
table.

2. For the input 30, 20, 56, 75, 31, 19 and hash function h(K) = K mod 11
a. construct the closed hash table.
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b. find the largest number of key comparisons in a successful search in this
table.

c. find the average number of key comparisons in a successful search in this
table.

3. Why is it not a good idea for a hash function to depend on just one letter (say,
the first one) of a natural-language word?

4. Find the probability of all n keys being hashed to the same cell of a hash table
of size m if the hash function distributes keys evenly among all the cells of the
table.

5. Birthday paradox The birthday paradox asks how many people should be
in a room so that the chances are better than even that two of them will have
the same birthday (month and day). Find the quite unexpected answer to this
problem. What implication for hashing does this result have?

6. Answer the following questions for the separate-chaining version of hashing.
a. Where would you insert keys if you knew that all the keys in the dictionary

are distinct? Which dictionary operations, if any, would benefit from this
modification?

b. We could keep keys of the same linked list sorted. Which of the dictio-
nary operations would benefit from this modification? How could we take
advantage of this if all the keys stored in the entire table need to be sorted?

7. Explain how to use hashing to check whether all elements of a list are distinct.
What is the time efficiency of this application? Compare its efficiency with
that of the brute-force algorithm (Section 2.3) and of the presorting-based
algorithm (Section 6.1).

8. Fill in the following table with the average-case (as the first entry) and worst-
case (as the second entry) efficiency classes for the five implementations of
the ADT dictionary:

unordered ordered binary balanced
array array search tree search tree hashing

search

insertion

deletion

9. We have discussed hashing in the context of techniques based on space–time
trade-offs. But it also takes advantage of another general strategy. Which one?

10. Write a computer program that uses hashing for the following problem. Given
a natural-language text, generate a list of distinct words with the number of
occurrences of each word in the text. Insert appropriate counters in the pro-
gram to compare the empirical efficiency of hashing with the corresponding
theoretical results.



276 Space and Time Trade-Offs

T0 T1

p0

Ti –1 Tn –2

pn –2 Kn –1 pn –1pi –1p1K1 piKi

Tn –1Ti

.  .  . .  .  .

FIGURE 7.7 Parental node of a B-tree.

7.4 B-Trees

The idea of using extra space to facilitate faster access to a given data set is partic-
ularly important if the data set in question contains a very large number of records
that need to be stored on a disk. A principal device in organizing such data sets
is an index, which provides some information about the location of records with
indicated key values. For data sets of structured records (as opposed to “unstruc-
tured” data such as text, images, sound, and video), the most important index
organization is the B-tree, introduced by R. Bayer and E. McGreight [Bay72]. It
extends the idea of the 2-3 tree (see Section 6.3) by permitting more than a single
key in the same node of a search tree.

In the B-tree version we consider here, all data records (or record keys)
are stored at the leaves, in increasing order of the keys. The parental nodes are
used for indexing. Specifically, each parental node contains n − 1 ordered keys
K1 < . . . < Kn−1 assumed, for the sake of simplicity, to be distinct. The keys are
interposed with n pointers to the node’s children so that all the keys in subtree T0
are smaller than K1, all the keys in subtree T1 are greater than or equal to K1 and
smaller than K2 with K1 being equal to the smallest key in T1, and so on, through
the last subtree Tn−1 whose keys are greater than or equal to Kn−1 with Kn−1 being
equal to the smallest key in Tn−1 (see Figure 7.7).4

In addition, a B-tree of order m ≥ 2 must satisfy the following structural
properties:

The root is either a leaf or has between 2 and m children.
Each node, except for the root and the leaves, has between �m/2� and m

children (and hence between �m/2� − 1 and m − 1 keys).
The tree is (perfectly) balanced, i.e., all its leaves are at the same level.

4. The node depicted in Figure 7.7 is called the n-node. Thus, all the nodes in a classic binary search tree
are 2-nodes; a 2-3 tree introduced in Section 6.3 comprises 2-nodes and 3-nodes.
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60, 68, 8040, 43, 4615, 16, 19 51, 5534, 3825, 2820, 2411, 144, 7, 10

FIGURE 7.8 Example of a B-tree of order 4.

An example of a B-tree of order 4 is given in Figure 7.8.
Searching in a B-tree is very similar to searching in the binary search tree, and

even more so in the 2-3 tree. Starting with the root, we follow a chain of pointers
to the leaf that may contain the search key. Then we search for the search key
among the keys of that leaf. Note that since keys are stored in sorted order, at
both parental nodes and leaves, we can use binary search if the number of keys at
a node is large enough to make it worthwhile.

It is not the number of key comparisons, however, that we should be con-
cerned about in a typical application of this data structure. When used for storing
a large data file on a disk, the nodes of a B-tree normally correspond to the disk
pages. Since the time needed to access a disk page is typically several orders of
magnitude larger than the time needed to compare keys in the fast computer mem-
ory, it is the number of disk accesses that becomes the principal indicator of the
efficiency of this and similar data structures.

How many nodes of a B-tree do we need to access during a search for a record
with a given key value? This number is, obviously, equal to the height of the tree
plus 1. To estimate the height, let us find the smallest number of keys a B-tree of
order m and positive height h can have. The root of the tree will contain at least
one key. Level 1 will have at least two nodes with at least �m/2� − 1 keys in each
of them, for the total minimum number of keys 2(�m/2� − 1). Level 2 will have at
least 2�m/2� nodes (the children of the nodes on level 1) with at least �m/2� − 1
in each of them, for the total minimum number of keys 2�m/2�(�m/2� − 1). In
general, the nodes of level i, 1 ≤ i ≤ h − 1, will contain at least 2�m/2�i−1(�m/2� −
1) keys. Finally, level h, the leaf level, will have at least 2�m/2�h−1 nodes with at
least one key in each. Thus, for any B-tree of order m with n nodes and height
h > 0, we have the following inequality:

n ≥ 1 +
h−1∑
i=1

2�m/2�i−1(�m/2� − 1) + 2�m/2�h−1.

After a series of standard simplifications (see Problem 2 in this section’s exercises),
this inequality reduces to
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n ≥ 4�m/2�h−1 − 1,

which, in turn, yields the following upper bound on the height h of the B-tree of
order m with n nodes:

h ≤ �log�m/2�
n + 1

4
� + 1. (7.7)

Inequality (7.7) immediately implies that searching in a B-tree is a O(log n)

operation. But it is important to ascertain here not just the efficiency class but
the actual number of disk accesses implied by this formula. The following table
contains the values of the right-hand-side estimates for a file of 100 million records
and a few typical values of the tree’s order m:

order m 50 100 250
h’s upper bound 6 5 4

Keep in mind that the table’s entries are upper estimates for the number of disk
accesses. In actual applications, this number rarely exceeds 3, with the B-tree’s
root and sometimes first-level nodes stored in the fast memory to minimize the
number of disk accesses.

The operations of insertion and deletion are less straightforward than search-
ing, but both can also be done in O(log n) time. Here we outline an insertion
algorithm only; a deletion algorithm can be found in the references (e.g., [Aho83],
[Cor09]).

The most straightforward algorithm for inserting a new record into a B-
tree is quite similar to the algorithm for insertion into a 2-3 tree outlined in
Section 6.3. First, we apply the search procedure to the new record’s key K to
find the appropriate leaf for the new record. If there is room for the record in that
leaf, we place it there (in an appropriate position so that the keys remain sorted)
and we are done. If there is no room for the record, the leaf is split in half by
sending the second half of the records to a new node. After that, the smallest key
K ′ in the new node and the pointer to it are inserted into the old leaf’s parent
(immediately after the key and pointer to the old leaf). This recursive procedure
may percolate up to the tree’s root. If the root is already full too, a new root is
created with the two halves of the old root’s keys split between two children of
the new root. As an example, Figure 7.9 shows the result of inserting 65 into the
B-tree in Figure 7.8 under the restriction that the leaves cannot contain more than
three items.

You should be aware that there are other algorithms for implementing inser-
tions into a B-tree. For example, to avoid the possibility of recursive node splits,
we can split full nodes encountered in searching for an appropriate leaf for the
new record. Another possibility is to avoid some node splits by moving a key to
the node’s sibling. For example, inserting 65 into the B-tree in Figure 7.8 can be
done by moving 60, the smallest key of the full leaf, to its sibling with keys 51 and
55, and replacing the key value of their parent by 65, the new smallest value in
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40, 43, 4615, 16, 19 51, 55 60, 65 68, 8034, 3825, 2820, 2411, 144, 7, 10

FIGURE 7.9 B-tree obtained after inserting 65 into the B-tree in Figure 7.8.

the second child. This modification tends to save some space at the expense of a
slightly more complicated algorithm.

A B-tree does not have to be always associated with the indexing of a large
file, and it can be considered as one of several search tree varieties. As with other
types of search trees—such as binary search trees, AVL trees, and 2-3 trees—a B-
tree can be constructed by successive insertions of data records into the initially
empty tree. (The empty tree is considered to be a B-tree, too.) When all keys reside
in the leaves and the upper levels are organized as a B-tree comprising an index,
the entire structure is usually called, in fact, a B+++-tree.

Exercises 7.4

1. Give examples of using an index in real-life applications that do not involve
computers.

2. a. Prove the equality

1 +
h−1∑
i=1

2�m/2�i−1(�m/2� − 1) + 2�m/2�h−1 = 4�m/2�h−1 − 1,

which was used in the derivation of upper bound (7.7) for the height of a
B-tree.

b. Complete the derivation of inequality (7.7).

3. Find the minimum order of the B-tree that guarantees that the number of disk
accesses in searching in a file of 100 million records does not exceed 3. Assume
that the root’s page is stored in main memory.

4. Draw the B-tree obtained after inserting 30 and then 31 in the B-tree in
Figure 7.8. Assume that a leaf cannot contain more than three items.

5. Outline an algorithm for finding the largest key in a B-tree.

6. a. A top-down 2-3-4 tree is a B-tree of order 4 with the following modifica-
tion of the insert operation: Whenever a search for a leaf for a new key
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encounters a full node (i.e., a node with three keys), the node is split into
two nodes by sending its middle key to the node’s parent, or, if the full
node happens to be the root, the new root for the middle key is created.
Construct a top-down 2-3-4 tree by inserting the following list of keys in
the initially empty tree:

10, 6, 15, 31, 20, 27, 50, 44, 18.

b. What is the principal advantage of this insertion procedure compared with
the one used for 2-3 trees in Section 6.3? What is its disadvantage?

7. a. Write a program implementing a key insertion algorithm in a B-tree.

b. Write a program for visualization of a key insertion algorithm in a B-tree.

SUMMARY

Space and time trade-offs in algorithm design are a well-known issue for
both theoreticians and practitioners of computing. As an algorithm design
technique, trading space for time is much more prevalent than trading time
for space.

Input enhancement is one of the two principal varieties of trading space for
time in algorithm design. Its idea is to preprocess the problem’s input, in whole
or in part, and store the additional information obtained in order to accelerate
solving the problem afterward. Sorting by distribution counting and several
important algorithms for string matching are examples of algorithms based
on this technique.

Distribution counting is a special method for sorting lists of elements from a
small set of possible values.

Horspool’s algorithm for string matching can be considered a simplified
version of the Boyer-Moore algorithm.Both algorithms are based on the ideas
of input enhancement and right-to-left comparisons of a pattern’s characters.
Both algorithms use the same bad-symbol shift table; the Boyer-Moore also
uses a second table, called the good-suffix shift table.

Prestructuring—the second type of technique that exploits space-for-time
trade-offs—uses extra space to facilitate a faster and/or more flexible access
to the data. Hashing and B+-trees are important examples of prestructuring.

Hashing is a very efficient approach to implementing dictionaries. It is based
on the idea of mapping keys into a one-dimensional table. The size limitations
of such a table make it necessary to employ a collision resolution mechanism.
The two principal varieties of hashing are open hashing or separate chaining
(with keys stored in linked lists outside of the hash table) and closed hashing
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or open addressing (with keys stored inside the table). Both enable searching,
insertion, and deletion in �(1) time, on average.

The B-tree is a balanced search tree that generalizes the idea of the 2-3 tree
by allowing multiple keys at the same node. Its principal application, called
the B+-tree, is for keeping index-like information about data stored on a
disk. By choosing the order of the tree appropriately, one can implement the
operations of searching, insertion, and deletion with just a few disk accesses
even for extremely large files.
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8
Dynamic Programming

An idea, like a ghost . . . must be spoken to a little before it will
explain itself.

—Charles Dickens (1812–1870)

Dynamic programming is an algorithm design technique with a rather inter-
esting history. It was invented by a prominent U.S. mathematician, Richard

Bellman, in the 1950s as a general method for optimizing multistage decision pro-
cesses. Thus, the word “programming” in the name of this technique stands for
“planning” and does not refer to computer programming. After proving its worth
as an important tool of applied mathematics, dynamic programming has even-
tually come to be considered, at least in computer science circles, as a general
algorithm design technique that does not have to be limited to special types of
optimization problems. It is from this point of view that we will consider this tech-
nique here.

Dynamic programming is a technique for solving problems with overlapping
subproblems. Typically, these subproblems arise from a recurrence relating a given
problem’s solution to solutions of its smaller subproblems. Rather than solving
overlapping subproblems again and again, dynamic programming suggests solving
each of the smaller subproblems only once and recording the results in a table from
which a solution to the original problem can then be obtained.

This technique can be illustrated by revisiting the Fibonacci numbers dis-
cussed in Section 2.5. (If you have not read that section, you will be able to follow
the discussion anyway. But it is a beautiful topic, so if you feel a temptation to read
it, do succumb to it.) The Fibonacci numbers are the elements of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

which can be defined by the simple recurrence

F(n) = F(n − 1) + F(n − 2) for n > 1 (8.1)

283
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and two initial conditions

F(0) = 0, F (1) = 1. (8.2)

If we try to use recurrence (8.1) directly to compute the nth Fibonacci number
F(n), we would have to recompute the same values of this function many times
(see Figure 2.6 for an example). Note that the problem of computing F(n) is
expressed in terms of its smaller and overlapping subproblems of computing
F(n − 1) and F(n − 2). So we can simply fill elements of a one-dimensional array
with the n + 1 consecutive values of F(n) by starting, in view of initial conditions
(8.2), with 0 and 1 and using equation (8.1) as the rule for producing all the other
elements. Obviously, the last element of this array will contain F(n). Single-loop
pseudocode of this very simple algorithm can be found in Section 2.5.

Note that we can, in fact, avoid using an extra array to accomplish this task
by recording the values of just the last two elements of the Fibonacci sequence
(Problem 8 in Exercises 2.5). This phenomenon is not unusual, and we shall en-
counter it in a few more examples in this chapter. Thus, although a straightforward
application of dynamic programming can be interpreted as a special variety of
space-for-time trade-off, a dynamic programming algorithm can sometimes be re-
fined to avoid using extra space.

Certain algorithms compute the nth Fibonacci number without computing
all the preceding elements of this sequence (see Section 2.5). It is typical of
an algorithm based on the classic bottom-up dynamic programming approach,
however, to solve all smaller subproblems of a given problem. One variation of the
dynamic programming approach seeks to avoid solving unnecessary subproblems.
This technique, illustrated in Section 8.2, exploits so-called memory functions and
can be considered a top-down variation of dynamic programming.

Whether one uses the classical bottom-up version of dynamic programming or
its top-down variation, the crucial step in designing such an algorithm remains the
same: deriving a recurrence relating a solution to the problem to solutions to its
smaller subproblems. The immediate availability of equation (8.1) for computing
the nth Fibonacci number is one of the few exceptions to this rule.

Since a majority of dynamic programming applications deal with optimiza-
tion problems, we also need to mention a general principle that underlines such
applications. Richard Bellman called it the principle of optimality. In terms some-
what different from its original formulation, it says that an optimal solution to any
instance of an optimization problem is composed of optimal solutions to its subin-
stances. The principle of optimality holds much more often than not. (To give a
rather rare example, it fails for finding the longest simple path in a graph.) Al-
though its applicability to a particular problem needs to be checked, of course,
such a check is usually not a principal difficulty in developing a dynamic program-
ming algorithm.

In the sections and exercises of this chapter are a few standard examples of
dynamic programming algorithms. (The algorithms in Section 8.4 were, in fact,
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invented independently of the discovery of dynamic programming and only later
came to be viewed as examples of this technique’s applications.) Numerous other
applications range from the optimal way of breaking text into lines (e.g., [Baa00])
to image resizing [Avi07] to a variety of applications to sophisticated engineering
problems (e.g., [Ber01]).

8.1 Three Basic Examples

The goal of this section is to introduce dynamic programming via three typical
examples.

EXAMPLE 1 Coin-row problem There is a row of n coins whose values are some
positive integers c1, c2, . . . , cn, not necessarily distinct. The goal is to pick up the
maximum amount of money subject to the constraint that no two coins adjacent
in the initial row can be picked up.

Let F(n) be the maximum amount that can be picked up from the row of n

coins. To derive a recurrence for F(n), we partition all the allowed coin selections
into two groups: those that include the last coin and those without it. The largest
amount we can get from the first group is equal to cn + F(n − 2)—the value of the
nth coin plus the maximum amount we can pick up from the first n − 2 coins. The
maximum amount we can get from the second group is equal to F(n − 1) by the
definition of F(n). Thus, we have the following recurrence subject to the obvious
initial conditions:

F(n) = max{cn + F(n − 2), F (n − 1)} for n > 1,

F (0) = 0, F (1) = c1.
(8.3)

We can compute F(n) by filling the one-row table left to right in the manner
similar to the way it was done for the nth Fibonacci number by Algorithm Fib(n)
in Section 2.5.

ALGORITHM CoinRow(C[1..n])

//Applies formula (8.3) bottom up to find the maximum amount of money
//that can be picked up from a coin row without picking two adjacent coins
//Input: Array C[1..n] of positive integers indicating the coin values
//Output: The maximum amount of money that can be picked up
F [0] ← 0; F [1] ← C[1]
for i ← 2 to n do

F [i] ← max(C[i] + F [i − 2], F [i − 1])
return F [n]

The application of the algorithm to the coin row of denominations 5, 1, 2, 10,
6, 2 is shown in Figure 8.1. It yields the maximum amount of 17. It is worth pointing
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FIGURE 8.1 Solving the coin-row problem by dynamic programming for the coin row
5, 1, 2, 10, 6, 2.

out that, in fact, we also solved the problem for the first i coins in the row given
for every 1 ≤ i ≤ 6. For example, for i = 3, the maximum amount is F(3) = 7.

To find the coins with the maximum total value found, we need to back-
trace the computations to see which of the two possibilities—cn + F(n − 2) or
F(n − 1)—produced the maxima in formula (8.3). In the last application of the
formula, it was the sum c6 + F(4), which means that the coin c6 = 2 is a part of an
optimal solution. Moving to computing F(4), the maximum was produced by the
sum c4 + F(2), which means that the coin c4 = 10 is a part of an optimal solution
as well. Finally, the maximum in computing F(2) was produced by F(1), implying
that the coin c2 is not the part of an optimal solution and the coin c1 = 5 is. Thus, the
optimal solution is {c1, c4, c6}. To avoid repeating the same computations during
the backtracing, the information about which of the two terms in (8.3) was larger
can be recorded in an extra array when the values of F are computed.

Using the CoinRow to find F(n), the largest amount of money that can be
picked up, as well as the coins composing an optimal set, clearly takes �(n) time
and �(n) space. This is by far superior to the alternatives: the straightforward top-
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down application of recurrence (8.3) and solving the problem by exhaustive search
(Problem 3 in this section’s exercises).

EXAMPLE 2 Change-making problem Consider the general instance of the
following well-known problem. Give change for amount n using the minimum
number of coins of denominations d1 < d2 < . . . < dm. For the coin denominations
used in the United States, as for those used in most if not all other countries,
there is a very simple and efficient algorithm discussed in the next chapter. Here,
we consider a dynamic programming algorithm for the general case, assuming
availability of unlimited quantities of coins for each of the m denominations
d1 < d2 < . . . < dm where d1 = 1.

Let F(n) be the minimum number of coins whose values add up to n; it is
convenient to define F(0) = 0. The amount n can only be obtained by adding one
coin of denomination dj to the amount n − dj for j = 1, 2, . . . , m such that n ≥ dj .
Therefore, we can consider all such denominations and select the one minimizing
F(n − dj) + 1. Since 1 is a constant, we can, of course, find the smallest F(n − dj)

first and then add 1 to it. Hence, we have the following recurrence for F(n):

F(n) = min
j : n≥dj

{F(n − dj)} + 1 for n > 0,

F (0) = 0.

(8.4)

We can compute F(n) by filling a one-row table left to right in the manner similar
to the way it was done above for the coin-row problem, but computing a table
entry here requires finding the minimum of up to m numbers.

ALGORITHM ChangeMaking(D[1..m], n)

//Applies dynamic programming to find the minimum number of coins
//of denominations d1 < d2 < . . . < dm where d1 = 1 that add up to a
//given amount n

//Input: Positive integer n and array D[1..m] of increasing positive
// integers indicating the coin denominations where D[1] = 1
//Output: The minimum number of coins that add up to n

F [0] ← 0
for i ← 1 to n do

temp ← ∞; j ← 1
while j ≤ m and i ≥ D[j ] do

temp ← min(F [i − D[j ]], temp)

j ← j + 1
F [i] ← temp + 1

return F [n]

The application of the algorithm to amount n = 6 and denominations 1, 3,
4 is shown in Figure 8.2. The answer it yields is two coins. The time and space
efficiencies of the algorithm are obviously O(nm) and �(n), respectively.
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F [6] = min{F [6 – 1], F [6 – 3], F [6 – 4]} + 1 = 2

F [5] = min{F [5 – 1], F [5 – 3], F [5 – 4]} + 1 = 2

F [4] = min{F [4 – 1], F [4 – 3], F [4 – 4]} + 1 = 1

F [3] = min{F [3 – 1], F [3 – 3]} + 1 = 1

F [2] = min{F [2 – 1]} + 1 = 2

F [0] = 0

F [1] = min{F [1 – 1]} + 1 = 1

FIGURE 8.2 Application of Algorithm MinCoinChange to amount n = 6 and coin
denominations 1, 3, and 4.

To find the coins of an optimal solution, we need to backtrace the computa-
tions to see which of the denominations produced the minima in formula (8.4).
For the instance considered, the last application of the formula (for n = 6), the
minimum was produced by d2 = 3. The second minimum (for n = 6 − 3) was also
produced for a coin of that denomination. Thus, the minimum-coin set for n = 6
is two 3’s.

EXAMPLE 3 Coin-collecting problem Several coins are placed in cells of an
n × m board, no more than one coin per cell. A robot, located in the upper left cell
of the board, needs to collect as many of the coins as possible and bring them to
the bottom right cell. On each step, the robot can move either one cell to the right
or one cell down from its current location. When the robot visits a cell with a coin,
it always picks up that coin. Design an algorithm to find the maximum number of
coins the robot can collect and a path it needs to follow to do this.

Let F(i, j) be the largest number of coins the robot can collect and bring to
the cell (i, j) in the ith row and j th column of the board. It can reach this cell
either from the adjacent cell (i − 1, j) above it or from the adjacent cell (i, j − 1)
to the left of it. The largest numbers of coins that can be brought to these cells
are F(i − 1, j) and F(i, j − 1), respectively. Of course, there are no adjacent cells
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above the cells in the first row, and there are no adjacent cells to the left of the
cells in the first column. For those cells, we assume that F(i − 1, j) and F(i, j − 1)
are equal to 0 for their nonexistent neighbors. Therefore, the largest number of
coins the robot can bring to cell (i, j) is the maximum of these two numbers plus
one possible coin at cell (i, j) itself. In other words, we have the following formula
for F(i, j):

F(i, j) = max{F(i − 1, j), F (i, j − 1)} + cij for 1 ≤ i ≤ n, 1 ≤ j ≤ m

F(0, j) = 0 for 1 ≤ j ≤ m and F(i, 0) = 0 for 1 ≤ i ≤ n,
(8.5)

where cij = 1 if there is a coin in cell (i, j), and cij = 0 otherwise.
Using these formulas, we can fill in the n × m table of F(i, j) values either row

by row or column by column, as is typical for dynamic programming algorithms
involving two-dimensional tables.

ALGORITHM RobotCoinCollection(C[1..n, 1..m])

//Applies dynamic programming to compute the largest number of
//coins a robot can collect on an n × m board by starting at (1, 1)
//and moving right and down from upper left to down right corner
//Input: Matrix C[1..n, 1..m] whose elements are equal to 1 and 0
//for cells with and without a coin, respectively
//Output: Largest number of coins the robot can bring to cell (n, m)

F [1, 1] ← C[1, 1]; for j ← 2 to m do F [1, j ] ← F [1, j − 1] + C[1, j ]
for i ← 2 to n do

F [i, 1] ← F [i − 1, 1] + C[i, 1]
for j ← 2 to m do

F [i, j ] ← max(F [i − 1, j ], F [i, j − 1]) + C[i, j ]
return F [n, m]

The algorithm is illustrated in Figure 8.3b for the coin setup in Figure 8.3a.
Since computing the value of F(i, j) by formula (8.5) for each cell of the table takes
constant time, the time efficiency of the algorithm is �(nm). Its space efficiency is,
obviously, also �(nm).

Tracing the computations backward makes it possible to get an optimal path:
if F(i − 1, j) > F(i, j − 1), an optimal path to cell (i, j) must come down from
the adjacent cell above it; if F(i − 1, j) < F(i, j − 1), an optimal path to cell (i, j)

must come from the adjacent cell on the left; and if F(i − 1, j) = F(i, j − 1), it
can reach cell (i, j) from either direction. This yields two optimal paths for the
instance in Figure 8.3a, which are shown in Figure 8.3c. If ties are ignored, one
optimal path can be obtained in �(n + m) time.
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FIGURE 8.3 (a) Coins to collect. (b) Dynamic programming algorithm results. (c) Two
paths to collect 5 coins, the maximum number of coins possible.

Exercises 8.1

1. What does dynamic programming have in common with divide-and-conquer?
What is a principal difference between them?

2. Solve the instance 5, 1, 2, 10, 6 of the coin-row problem.

3. a. Show that the time efficiency of solving the coin-row problem by straight-
forward application of recurrence (8.3) is exponential.

b. Show that the time efficiency of solving the coin-row problem by exhaustive
search is at least exponential.

4. Apply the dynamic programming algorithm to find all the solutions to the
change-making problem for the denominations 1, 3, 5 and the amount
n = 9.
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5. How would you modify the dynamic programming algorithm for the coin-
collecting problem if some cells on the board are inaccessible for the robot?
Apply your algorithm to the board below, where the inaccessible cells are
shown by X’s. How many optimal paths are there for this board?

1

2

3

4

5

1 2 3 4 5 6

6. Rod-cutting problem Design a dynamic programming algorithm for the fol-
lowing problem. Find the maximum total sale price that can be obtained by
cutting a rod of n units long into integer-length pieces if the sale price of a piece
i units long is pi for i = 1, 2, . . . , n. What are the time and space efficiencies
of your algorithm?

7. Shortest-path counting A chess rook can move horizontally or vertically to
any square in the same row or in the same column of a chessboard. Find the
number of shortest paths by which a rook can move from one corner of a
chessboard to the diagonally opposite corner. The length of a path is measured
by the number of squares it passes through, including the first and the last
squares. Solve the problem
a. by a dynamic programming algorithm.

b. by using elementary combinatorics.

8. Minimum-sum descent Some positive integers are arranged in an equilateral
triangle with n numbers in its base like the one shown in the figure below for
n = 4. The problem is to find the smallest sum in a descent from the triangle
apex to its base through a sequence of adjacent numbers (shown in the figure
by the circles). Design a dynamic programming algorithm for this problem
and indicate its time efficiency.

2

5 4

741

968 6



292 Dynamic Programming

9. Binomial coefficient Design an efficient algorithm for computing the bino-
mial coefficient C(n, k) that uses no multiplications. What are the time and
space efficiencies of your algorithm?

10. Longest path in a dag
a. Design an efficient algorithm for finding the length of the longest path in a

dag. (This problem is important both as a prototype of many other dynamic
programming applications and in its own right because it determines the
minimal time needed for completing a project comprising precedence-
constrained tasks.)

b. Show how to reduce the coin-row problem discussed in this section to the
problem of finding a longest path in a dag.

11. Maximum square submatrix Given an m × n boolean matrix B, find its
largest square submatrix whose elements are all zeros. Design a dynamic
programming algorithm and indicate its time efficiency. (The algorithm may
be useful for, say, finding the largest free square area on a computer screen
or for selecting a construction site.)

12. World Series odds Consider two teams, A and B, playing a series of games
until one of the teams wins n games. Assume that the probability of A winning
a game is the same for each game and equal to p, and the probability of
A losing a game is q = 1 − p. (Hence, there are no ties.) Let P(i, j) be the
probability of A winning the series if A needs i more games to win the series
and B needs j more games to win the series.
a. Set up a recurrence relation for P(i, j) that can be used by a dynamic

programming algorithm.

b. Find the probability of team A winning a seven-game series if the proba-
bility of it winning a game is 0.4.

c. Write pseudocode of the dynamic programming algorithm for solving this
problem and determine its time and space efficiencies.

8.2 The Knapsack Problem and Memory Functions

We start this section with designing a dynamic programming algorithm for the
knapsack problem: given n items of known weights w1, . . . , wn and values
v1, . . . , vn and a knapsack of capacity W , find the most valuable subset of the
items that fit into the knapsack. (This problem was introduced in Section 3.4,
where we discussed solving it by exhaustive search.) We assume here that all the
weights and the knapsack capacity are positive integers; the item values do not
have to be integers.

To design a dynamic programming algorithm, we need to derive a recurrence
relation that expresses a solution to an instance of the knapsack problem in terms
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of solutions to its smaller subinstances. Let us consider an instance defined by the
first i items, 1 ≤ i ≤ n, with weights w1, . . . , wi, values v1, . . . , vi, and knapsack
capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an optimal solution to this
instance, i.e., the value of the most valuable subset of the first i items that fit into
the knapsack of capacity j. We can divide all the subsets of the first i items that fit
the knapsack of capacity j into two categories: those that do not include the ith
item and those that do. Note the following:

1. Among the subsets that do not include the ith item, the value of an optimal
subset is, by definition, F(i − 1, j).

2. Among the subsets that do include the ith item (hence, j − wi ≥ 0), an optimal
subset is made up of this item and an optimal subset of the first i − 1 items
that fits into the knapsack of capacity j − wi. The value of such an optimal
subset is vi + F(i − 1, j − wi).

Thus, the value of an optimal solution among all feasible subsets of the first i

items is the maximum of these two values. Of course, if the ith item does not fit
into the knapsack, the value of an optimal subset selected from the first i items
is the same as the value of an optimal subset selected from the first i − 1 items.
These observations lead to the following recurrence:

F(i, j) =
{

max{F(i − 1, j), vi + F(i − 1, j − wi)} if j − wi ≥ 0,
F(i − 1, j) if j − wi < 0. (8.6)

It is convenient to define the initial conditions as follows:

F(0, j) = 0 for j ≥ 0 and F(i, 0) = 0 for i ≥ 0. (8.7)

Our goal is to find F(n, W), the maximal value of a subset of the n given items
that fit into the knapsack of capacity W, and an optimal subset itself.

Figure 8.4 illustrates the values involved in equations (8.6) and (8.7). For
i, j > 0, to compute the entry in the ith row and the j th column, F(i, j), we
compute the maximum of the entry in the previous row and the same column
and the sum of vi and the entry in the previous row and wi columns to the left.
The table can be filled either row by row or column by column.

0

0 0 0 0 0

0
0

0 goal

j –wi

wi, vi

Wj

i
i –1

n

F (i –1, j –wi) F (i –1, j )
F (i, j )

FIGURE 8.4 Table for solving the knapsack problem by dynamic programming.
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capacity j

i 0 1 2 3 4 5
0 0 0 0 0 0 0

w1 = 2, v1 = 12 1 0 0 12 12 12 12
w2 = 1, v2 = 10 2 0 10 12 22 22 22
w3 = 3, v3 = 20 3 0 10 12 22 30 32
w4 = 2, v4 = 15 4 0 10 15 25 30 37

FIGURE 8.5 Example of solving an instance of the knapsack problem by the dynamic
programming algorithm.

EXAMPLE 1 Let us consider the instance given by the following data:

item weight value
1 2 $12
2 1 $10 capacity W = 5.
3 3 $20
4 2 $15

The dynamic programming table, filled by applying formulas (8.6) and (8.7),
is shown in Figure 8.5.

Thus, the maximal value is F(4, 5) = $37. We can find the composition of an
optimal subset by backtracing the computations of this entry in the table. Since
F(4, 5) > F(3, 5), item 4 has to be included in an optimal solution along with an
optimal subset for filling 5 − 2 = 3 remaining units of the knapsack capacity. The
value of the latter is F(3, 3). Since F(3, 3) = F(2, 3), item 3 need not be in an
optimal subset. Since F(2, 3) > F(1, 3), item 2 is a part of an optimal selection,
which leaves element F(1, 3 − 1) to specify its remaining composition. Similarly,
since F(1, 2) > F(0, 2), item 1 is the final part of the optimal solution {item 1,
item 2, item 4}.

The time efficiency and space efficiency of this algorithm are both in �(nW).

The time needed to find the composition of an optimal solution is in O(n). You
are asked to prove these assertions in the exercises.

Memory Functions

As we discussed at the beginning of this chapter and illustrated in subsequent
sections, dynamic programming deals with problems whose solutions satisfy a
recurrence relation with overlapping subproblems. The direct top-down approach
to finding a solution to such a recurrence leads to an algorithm that solves common
subproblems more than once and hence is very inefficient (typically, exponential
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or worse). The classic dynamic programming approach, on the other hand, works
bottom up: it fills a table with solutions to all smaller subproblems, but each of
them is solved only once. An unsatisfying aspect of this approach is that solutions
to some of these smaller subproblems are often not necessary for getting a solution
to the problem given. Since this drawback is not present in the top-down approach,
it is natural to try to combine the strengths of the top-down and bottom-up
approaches. The goal is to get a method that solves only subproblems that are
necessary and does so only once. Such a method exists; it is based on using memory
functions.

This method solves a given problem in the top-down manner but, in addition,
maintains a table of the kind that would have been used by a bottom-up dynamic
programming algorithm. Initially, all the table’s entries are initialized with a spe-
cial “null” symbol to indicate that they have not yet been calculated. Thereafter,
whenever a new value needs to be calculated, the method checks the correspond-
ing entry in the table first: if this entry is not “null,” it is simply retrieved from the
table; otherwise, it is computed by the recursive call whose result is then recorded
in the table.

The following algorithm implements this idea for the knapsack problem. After
initializing the table, the recursive function needs to be called with i = n (the
number of items) and j = W (the knapsack capacity).

ALGORITHM MFKnapsack(i, j)

//Implements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first
// items being considered and a nonnegative integer j indicating
// the knapsack capacity
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input arrays Weights[1..n], V alues[1..n],
//and table F [0..n, 0..W ] whose entries are initialized with −1’s except for
//row 0 and column 0 initialized with 0’s
if F [i, j ] < 0

if j < Weights[i]
value ← MFKnapsack(i − 1, j)

else
value ← max(MFKnapsack(i − 1, j),

Values[i] + MFKnapsack(i − 1, j − Weights[i]))
F [i, j ] ← value

return F [i, j ]

EXAMPLE 2 Let us apply the memory function method to the instance consid-
ered in Example 1. The table in Figure 8.6 gives the results. Only 11 out of 20
nontrivial values (i.e., not those in row 0 or in column 0) have been computed.
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capacity j

i 0 1 2 3 4 5
0 0 0 0 0 0 0

w1 = 2, v1 = 12 1 0 0 12 12 12 12
w2 = 1, v2 = 10 2 0 — 12 22 — 22
w3 = 3, v3 = 20 3 0 — — 22 — 32
w4 = 2, v4 = 15 4 0 — — — — 37

FIGURE 8.6 Example of solving an instance of the knapsack problem by the memory
function algorithm.

Just one nontrivial entry, V (1, 2), is retrieved rather than being recomputed. For
larger instances, the proportion of such entries can be significantly larger.

In general, we cannot expect more than a constant-factor gain in using the
memory function method for the knapsack problem, because its time efficiency
class is the same as that of the bottom-up algorithm (why?). A more significant
improvement can be expected for dynamic programming algorithms in which a
computation of one value takes more than constant time. You should also keep in
mind that a memory function algorithm may be less space-efficient than a space-
efficient version of a bottom-up algorithm.

Exercises 8.2

1. a. Apply the bottom-up dynamic programming algorithm to the following
instance of the knapsack problem:

item weight value
1 3 $25
2 2 $20
3 1 $15 capacity W = 6.
4 4 $40
5 5 $50

b. How many different optimal subsets does the instance of part (a) have?

c. In general, how can we use the table generated by the dynamic program-
ming algorithm to tell whether there is more than one optimal subset for
the knapsack problem’s instance?
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2. a. Write pseudocode of the bottom-up dynamic programming algorithm for
the knapsack problem.

b. Write pseudocode of the algorithm that finds the composition of an optimal
subset from the table generated by the bottom-up dynamic programming
algorithm for the knapsack problem.

3. For the bottom-up dynamic programming algorithm for the knapsack prob-
lem, prove that
a. its time efficiency is �(nW).

b. its space efficiency is �(nW).

c. the time needed to find the composition of an optimal subset from a filled
dynamic programming table is O(n).

4. a. True or false: A sequence of values in a row of the dynamic programming
table for the knapsack problem is always nondecreasing?

b. True or false: A sequence of values in a column of the dynamic program-
ming table for the knapsack problem is always nondecreasing?

5. Design a dynamic programming algorithm for the version of the knapsack
problem in which there are unlimited quantities of copies for each of the n

item kinds given. Indicate the time efficiency of the algorithm.

6. Apply the memory function method to the instance of the knapsack problem
given in Problem 1. Indicate the entries of the dynamic programming table
that are (i) never computed by the memory function method, (ii) retrieved
without a recomputation.

7. Prove that the efficiency class of the memory function algorithm for the knap-
sack problem is the same as that of the bottom-up algorithm (see Problem 3).

8. Explain why the memory function approach is unattractive for the problem of
computing a binomial coefficient by the formula C(n, k) = C(n − 1, k − 1) +
C(n − 1, k).

9. Write a research report on one of the following well-known applications of
dynamic programming:
a. finding the longest common subsequence in two sequences

b. optimal string editing

c. minimal triangulation of a polygon

8.3 Optimal Binary Search Trees

A binary search tree is one of the most important data structures in computer
science. One of its principal applications is to implement a dictionary, a set of
elements with the operations of searching, insertion, and deletion. If probabilities
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FIGURE 8.7 Two out of 14 possible binary search trees with keys A, B, C, and D.

of searching for elements of a set are known—e.g., from accumulated data about
past searches—it is natural to pose a question about an optimal binary search
tree for which the average number of comparisons in a search is the smallest
possible. For simplicity, we limit our discussion to minimizing the average number
of comparisons in a successful search. The method can be extended to include
unsuccessful searches as well.

As an example, consider four keys A, B, C, and D to be searched for with
probabilities 0.1, 0.2, 0.4, and 0.3, respectively. Figure 8.7 depicts two out of
14 possible binary search trees containing these keys. The average number of
comparisons in a successful search in the first of these trees is 0.1 . 1 + 0.2 . 2 + 0.4 .

3 + 0.3 . 4 = 2.9, and for the second one it is 0.1 . 2 + 0.2 . 1 + 0.4 . 2 + 0.3 . 3 = 2.1.
Neither of these two trees is, in fact, optimal. (Can you tell which binary tree is
optimal?)

For our tiny example, we could find the optimal tree by generating all 14
binary search trees with these keys. As a general algorithm, this exhaustive-search
approach is unrealistic: the total number of binary search trees with n keys is equal
to the nth Catalan number,

c(n) = 1
n + 1

(
2n

n

)
for n > 0, c(0) = 1,

which grows to infinity as fast as 4n/n1.5 (see Problem 7 in this section’s exercises).
So let a1, . . . , an be distinct keys ordered from the smallest to the largest and

let p1, . . . , pn be the probabilities of searching for them. Let C(i, j) be the smallest
average number of comparisons made in a successful search in a binary search tree
T

j

i made up of keys ai, . . . , aj , where i, j are some integer indices, 1 ≤ i ≤ j ≤ n.

Following the classic dynamic programming approach, we will find values of
C(i, j) for all smaller instances of the problem, although we are interested just in
C(1, n). To derive a recurrence underlying a dynamic programming algorithm, we
will consider all possible ways to choose a root ak among the keys ai, . . . , aj . For
such a binary search tree (Figure 8.8), the root contains key ak, the left subtree
T k−1

i contains keys ai, . . . , ak−1 optimally arranged, and the right subtree T
j

k+1
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ak

Optimal
BST for

ai, . . . ,ak–1

Optimal
BST for

ak +1, . . . ,aj

FIGURE 8.8 Binary search tree (BST) with root ak and two optimal binary search subtrees
T k−1

i and T
j

k+1.

contains keys ak+1, . . . , aj also optimally arranged. (Note how we are taking
advantage of the principle of optimality here.)

If we count tree levels starting with 1 to make the comparison numbers equal
the keys’ levels, the following recurrence relation is obtained:

C(i, j) = min
i≤k≤j

{pk
. 1 +

k−1∑
s=i

ps
. (level of as in T k−1

i + 1)

+
j∑

s=k+1

ps
. (level of as in T

j

k+1 + 1)}

= min
i≤k≤j

{
k−1∑
s=i

ps
. level of as in T k−1

i +
j∑

s=k+1

ps
. level of as in T

j

k+1 +
j∑

s=i

ps}

= min
i≤k≤j

{C(i, k − 1) + C(k + 1, j)} +
j∑

s=i

ps.

Thus, we have the recurrence

C(i, j) = min
i≤k≤j

{C(i, k − 1) + C(k + 1, j)} +
j∑

s=i

ps for 1 ≤ i ≤ j ≤ n. (8.8)

We assume in formula (8.8) that C(i, i − 1) = 0 for 1 ≤ i ≤ n + 1, which can be
interpreted as the number of comparisons in the empty tree. Note that this formula
implies that

C(i, i) = pi for 1 ≤ i ≤ n,

as it should be for a one-node binary search tree containing ai.
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FIGURE 8.9 Table of the dynamic programming algorithm for constructing an optimal
binary search tree.

The two-dimensional table in Figure 8.9 shows the values needed for comput-
ing C(i, j) by formula (8.8): they are in row i and the columns to the left of column
j and in column j and the rows below row i. The arrows point to the pairs of en-
tries whose sums are computed in order to find the smallest one to be recorded as
the value of C(i, j). This suggests filling the table along its diagonals, starting with
all zeros on the main diagonal and given probabilities pi, 1 ≤ i ≤ n, right above it
and moving toward the upper right corner.

The algorithm we just sketched computes C(1, n)—the average number of
comparisons for successful searches in the optimal binary tree. If we also want to
get the optimal tree itself, we need to maintain another two-dimensional table to
record the value of k for which the minimum in (8.8) is achieved. The table has
the same shape as the table in Figure 8.9 and is filled in the same manner, starting
with entries R(i, i) = i for 1 ≤ i ≤ n. When the table is filled, its entries indicate
indices of the roots of the optimal subtrees, which makes it possible to reconstruct
an optimal tree for the entire set given.

EXAMPLE Let us illustrate the algorithm by applying it to the four-key set we
used at the beginning of this section:
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key A B C D

probability 0.1 0.2 0.4 0.3

The initial tables look like this:

0.1
0 0.2

0 0.4
0 0.3

0

01
2
3
4
5

0 1 2 3 4
1
2
3
4
5

0 1
1

2

2

3

3

4

4

main table root table

Let us compute C(1, 2):

C(1, 2) = min

{
k = 1: C(1, 0) + C(2, 2) +∑2

s=1 ps = 0 + 0.2 + 0.3 = 0.5

k = 2: C(1, 1) + C(3, 2) +∑2
s=1 ps = 0.1 + 0 + 0.3 = 0.4

}

= 0.4.

Thus, out of two possible binary trees containing the first two keys, A and B, the
root of the optimal tree has index 2 (i.e., it contains B), and the average number
of comparisons in a successful search in this tree is 0.4.

We will ask you to finish the computations in the exercises. You should arrive
at the following final tables:

0.1
0

0.4
0.2
0

1.1
0.8
0.4
0

1.7
1.4
1.0
0.3
0

01
2
3
4
5

0 1 2 3 4
1
2
3
4
5

0 1
1 2

2
3
3
3

3
3
3
4

2 3 4
main table root table

Thus, the average number of key comparisons in the optimal tree is equal to
1.7. Since R(1, 4) = 3, the root of the optimal tree contains the third key, i.e., C. Its
left subtree is made up of keys A and B, and its right subtree contains just key D

(why?). To find the specific structure of these subtrees, we find first their roots by
consulting the root table again as follows. Since R(1, 2) = 2, the root of the optimal
tree containing A and B is B, with A being its left child (and the root of the one-
node tree: R(1, 1) = 1). Since R(4, 4) = 4, the root of this one-node optimal tree is
its only key D. Figure 8.10 presents the optimal tree in its entirety.
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FIGURE 8.10 Optimal binary search tree for the example.

Here is pseudocode of the dynamic programming algorithm.

ALGORITHM OptimalBST(P [1..n])

//Finds an optimal binary search tree by dynamic programming
//Input: An array P [1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
// optimal BST and table R of subtrees’ roots in the optimal BST
for i ← 1 to n do

C[i, i − 1] ← 0
C[i, i] ← P [i]
R[i, i] ← i

C[n + 1, n] ← 0
for d ← 1 to n − 1 do //diagonal count

for i ← 1 to n − d do
j ← i + d

minval ← ∞
for k ← i to j do

if C[i, k − 1] + C[k + 1, j ] < minval
minval ← C[i, k − 1] + C[k + 1, j ]; kmin ← k

R[i, j ] ← kmin

sum ← P [i]; for s ← i + 1 to j do sum ← sum + P [s]
C[i, j ] ← minval + sum

return C[1, n], R

The algorithm’s space efficiency is clearly quadratic; the time efficiency of this
version of the algorithm is cubic (why?). A more careful analysis shows that entries
in the root table are always nondecreasing along each row and column. This limits
values for R(i, j) to the range R(i, j − 1), . . . , R(i + 1, j) and makes it possible
to reduce the running time of the algorithm to �(n2).
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Exercises 8.3

1. Finish the computations started in the section’s example of constructing an
optimal binary search tree.

2. a. Why is the time efficiency of algorithm OptimalBST cubic?

b. Why is the space efficiency of algorithm OptimalBST quadratic?

3. Write pseudocode for a linear-time algorithm that generates the optimal
binary search tree from the root table.

4. Devise a way to compute the sums
∑j

s=i ps, which are used in the dynamic
programming algorithm for constructing an optimal binary search tree, in
constant time (per sum).

5. True or false: The root of an optimal binary search tree always contains the
key with the highest search probability?

6. How would you construct an optimal binary search tree for a set of n keys if
all the keys are equally likely to be searched for? What will be the average
number of comparisons in a successful search in such a tree if n = 2k?

7. a. Show that the number of distinct binary search trees b(n) that can be
constructed for a set of n orderable keys satisfies the recurrence relation

b(n) =
n−1∑
k=0

b(k)b(n − 1 − k) for n > 0, b(0) = 1.

b. It is known that the solution to this recurrence is given by the Catalan
numbers. Verify this assertion for n = 1, 2, . . . , 5.

c. Find the order of growth of b(n). What implication does the answer to
this question have for the exhaustive-search algorithm for constructing an
optimal binary search tree?

8. Design a �(n2) algorithm for finding an optimal binary search tree.

9. Generalize the optimal binary search algorithm by taking into account unsuc-
cessful searches.

10. Write pseudocode of a memory function for the optimal binary search tree
problem. You may limit your function to finding the smallest number of key
comparisons in a successful search.

11. Matrix chain multiplication Consider the problem of minimizing the total
number of multiplications made in computing the product of n matrices

A1 . A2 . . . . . An

whose dimensions are d0 × d1, d1 × d2, . . . , dn−1 × dn, respectively. Assume
that all intermediate products of two matrices are computed by the brute-
force (definition-based) algorithm.
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a. Give an example of three matrices for which the number of multiplications
in (A1 . A2) . A3 and A1 . (A2 . A3) differ at least by a factor of 1000.

b. How many different ways are there to compute the product of n matrices?

c. Design a dynamic programming algorithm for finding an optimal order of
multiplying n matrices.

8.4 Warshall’s and Floyd’s Algorithms

In this section, we look at two well-known algorithms: Warshall’s algorithm for
computing the transitive closure of a directed graph and Floyd’s algorithm for the
all-pairs shortest-paths problem. These algorithms are based on essentially the
same idea: exploit a relationship between a problem and its simpler rather than
smaller version. Warshall and Floyd published their algorithms without mention-
ing dynamic programming. Nevertheless, the algorithms certainly have a dynamic
programming flavor and have come to be considered applications of this tech-
nique.

Warshall’s Algorithm

Recall that the adjacency matrix A = {aij} of a directed graph is the boolean matrix
that has 1 in its ith row and j th column if and only if there is a directed edge from
the ith vertex to the j th vertex. We may also be interested in a matrix containing
the information about the existence of directed paths of arbitrary lengths between
vertices of a given graph. Such a matrix, called the transitive closure of the digraph,
would allow us to determine in constant time whether the j th vertex is reachable
from the ith vertex.

Here are a few application examples. When a value in a spreadsheet cell
is changed, the spreadsheet software must know all the other cells affected by
the change. If the spreadsheet is modeled by a digraph whose vertices represent
the spreadsheet cells and edges indicate cell dependencies, the transitive closure
will provide such information. In software engineering, transitive closure can be
used for investigating data flow and control flow dependencies as well as for
inheritance testing of object-oriented software. In electronic engineering, it is used
for redundancy identification and test generation for digital circuits.

DEFINITION The transitive closure of a directed graph with n vertices can be
defined as the n × n boolean matrix T = {tij}, in which the element in the ith row
and the j th column is 1 if there exists a nontrivial path (i.e., directed path of a
positive length) from the ith vertex to the j th vertex; otherwise, tij is 0.

An example of a digraph, its adjacency matrix, and its transitive closure is
given in Figure 8.11.

We can generate the transitive closure of a digraph with the help of depth-
first search or breadth-first search. Performing either traversal starting at the ith
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FIGURE 8.11 (a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

vertex gives the information about the vertices reachable from it and hence the
columns that contain 1’s in the ith row of the transitive closure. Thus, doing such
a traversal for every vertex as a starting point yields the transitive closure in its
entirety.

Since this method traverses the same digraph several times, we should hope
that a better algorithm can be found. Indeed, such an algorithm exists. It is called
Warshall’s algorithm after Stephen Warshall, who discovered it [War62]. It is
convenient to assume that the digraph’s vertices and hence the rows and columns
of the adjacency matrix are numbered from 1 to n. Warshall’s algorithm constructs
the transitive closure through a series of n × n boolean matrices:

R(0), . . . , R(k−1), R(k), . . . R(n). (8.9)

Each of these matrices provides certain information about directed paths in the
digraph. Specifically, the element r

(k)
ij in the ith row and j th column of matrix

R(k) (i, j = 1, 2, . . . , n, k = 0, 1, . . . , n) is equal to 1 if and only if there exists a
directed path of a positive length from the ith vertex to the j th vertex with each
intermediate vertex, if any, numbered not higher than k. Thus, the series starts
with R(0), which does not allow any intermediate vertices in its paths; hence,
R(0) is nothing other than the adjacency matrix of the digraph. (Recall that the
adjacency matrix contains the information about one-edge paths, i.e., paths with
no intermediate vertices.) R(1) contains the information about paths that can use
the first vertex as intermediate; thus, with more freedom, so to speak, it may
contain more 1’s than R(0). In general, each subsequent matrix in series (8.9) has
one more vertex to use as intermediate for its paths than its predecessor and hence
may, but does not have to, contain more 1’s. The last matrix in the series, R(n),

reflects paths that can use all n vertices of the digraph as intermediate and hence
is nothing other than the digraph’s transitive closure.

The central point of the algorithm is that we can compute all the elements of
each matrix R(k) from its immediate predecessor R(k−1) in series (8.9). Let r

(k)
ij ,

the element in the ith row and j th column of matrix R(k), be equal to 1. This
means that there exists a path from the ith vertex vi to the j th vertex vj with each
intermediate vertex numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, vj . (8.10)
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FIGURE 8.12 Rule for changing zeros in Warshall’s algorithm.

Two situations regarding this path are possible. In the first, the list of its inter-
mediate vertices does not contain the kth vertex. Then this path from vi to vj has

intermediate vertices numbered not higher than k − 1, and therefore r
(k−1)
ij is equal

to 1 as well. The second possibility is that path (8.10) does contain the kth vertex vk

among the intermediate vertices. Without loss of generality, we may assume that
vk occurs only once in that list. (If it is not the case, we can create a new path from
vi to vj with this property by simply eliminating all the vertices between the first
and last occurrences of vk in it.) With this caveat, path (8.10) can be rewritten as
follows:

vi, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, vj .

The first part of this representation means that there exists a path from vi to vk with
each intermediate vertex numbered not higher than k − 1 (hence, r

(k−1)
ik = 1), and

the second part means that there exists a path from vk to vj with each intermediate

vertex numbered not higher than k − 1 (hence, r
(k−1)
kj = 1).

What we have just proved is that if r
(k)
ij = 1, then either r

(k−1)
ij = 1 or both

r
(k−1)
ik = 1 and r

(k−1)
kj = 1. It is easy to see that the converse of this assertion is also

true. Thus, we have the following formula for generating the elements of matrix
R(k) from the elements of matrix R(k−1):

r
(k)
ij = r

(k−1)
ij or

(
r
(k−1)
ik and r

(k−1)
kj

)
. (8.11)

Formula (8.11) is at the heart of Warshall’s algorithm. This formula implies
the following rule for generating elements of matrix R(k) from elements of matrix
R(k−1), which is particularly convenient for applying Warshall’s algorithm by hand:

If an element rij is 1 in R(k−1), it remains 1 in R(k).

If an element rij is 0 in R(k−1), it has to be changed to 1 in R(k) if and only if
the element in its row i and column k and the element in its column j and row
k are both 1’s in R(k−1). This rule is illustrated in Figure 8.12.

As an example, the application of Warshall’s algorithm to the digraph in
Figure 8.11 is shown in Figure 8.13.
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FIGURE 8.13 Application of Warshall’s algorithm to the digraph shown. New 1’s are in
bold.

Here is pseudocode of Warshall’s algorithm.

ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R(0) ← A

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
R(k)[i, j ] ← R(k−1)[i, j ] or (R(k−1)[i, k] and R(k−1)[k, j ])

return R(n)

Several observations need to be made about Warshall’s algorithm. First, it is
remarkably succinct, is it not? Still, its time efficiency is only �(n3). In fact, for
sparse graphs represented by their adjacency lists, the traversal-based algorithm
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FIGURE 8.14 (a) Digraph. (b) Its weight matrix. (c) Its distance matrix.

mentioned at the beginning of this section has a better asymptotic efficiency
than Warshall’s algorithm (why?). We can speed up the above implementation
of Warshall’s algorithm for some inputs by restructuring its innermost loop (see
Problem 4 in this section’s exercises). Another way to make the algorithm run
faster is to treat matrix rows as bit strings and employ the bitwise or operation
available in most modern computer languages.

As to the space efficiency of Warshall’s algorithm, the situation is similar to
that of computing a Fibonacci number and some other dynamic programming
algorithms. Although we used separate matrices for recording intermediate results
of the algorithm, this is, in fact, unnecessary. Problem 3 in this section’s exercises
asks you to find a way of avoiding this wasteful use of the computer memory.
Finally, we shall see below how the underlying idea of Warshall’s algorithm can
be applied to the more general problem of finding lengths of shortest paths in
weighted graphs.

Floyd’s Algorithm for the All-Pairs Shortest-Paths Problem

Given a weighted connected graph (undirected or directed), the all-pairs shortest-
paths problem asks to find the distances—i.e., the lengths of the shortest paths—
from each vertex to all other vertices. This is one of several variations of the
problem involving shortest paths in graphs. Because of its important applications
to communications, transportation networks, and operations research, it has been
thoroughly studied over the years. Among recent applications of the all-pairs
shortest-path problem is precomputing distances for motion planning in computer
games.

It is convenient to record the lengths of shortest paths in an n × n matrix D

called the distance matrix: the element dij in the ith row and the j th column of
this matrix indicates the length of the shortest path from the ith vertex to the j th
vertex. For an example, see Figure 8.14.

We can generate the distance matrix with an algorithm that is very similar to
Warshall’s algorithm. It is called Floyd’s algorithm after its co-inventor Robert W.
Floyd.1 It is applicable to both undirected and directed weighted graphs provided

1. Floyd explicitly referenced Warshall’s paper in presenting his algorithm [Flo62]. Three years earlier,
Bernard Roy published essentially the same algorithm in the proceedings of the French Academy of
Sciences [Roy59].
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that they do not contain a cycle of a negative length. (The distance between any two
vertices in such a cycle can be made arbitrarily small by repeating the cycle enough
times.) The algorithm can be enhanced to find not only the lengths of the shortest
paths for all vertex pairs but also the shortest paths themselves (Problem 10 in this
section’s exercises).

Floyd’s algorithm computes the distance matrix of a weighted graph with n

vertices through a series of n × n matrices:

D(0), . . . , D(k−1), D(k), . . . , D(n). (8.12)

Each of these matrices contains the lengths of shortest paths with certain con-
straints on the paths considered for the matrix in question. Specifically, the el-
ement d

(k)
ij in the ith row and the j th column of matrix D(k) (i, j = 1, 2, . . . , n,

k = 0, 1, . . . , n) is equal to the length of the shortest path among all paths from
the ith vertex to the j th vertex with each intermediate vertex, if any, numbered
not higher than k. In particular, the series starts with D(0), which does not allow
any intermediate vertices in its paths; hence, D(0) is simply the weight matrix of the
graph. The last matrix in the series, D(n), contains the lengths of the shortest paths
among all paths that can use all n vertices as intermediate and hence is nothing
other than the distance matrix being sought.

As in Warshall’s algorithm, we can compute all the elements of each matrix
D(k) from its immediate predecessor D(k−1) in series (8.12). Let d

(k)
ij be the element

in the ith row and the j th column of matrix D(k). This means that d
(k)
ij is equal to

the length of the shortest path among all paths from the ith vertex vi to the j th
vertex vj with their intermediate vertices numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, vj . (8.13)

We can partition all such paths into two disjoint subsets: those that do not use the
kth vertex vk as intermediate and those that do. Since the paths of the first subset
have their intermediate vertices numbered not higher than k − 1, the shortest of
them is, by definition of our matrices, of length d

(k−1)
ij .

What is the length of the shortest path in the second subset? If the graph does
not contain a cycle of a negative length, we can limit our attention only to the
paths in the second subset that use vertex vk as their intermediate vertex exactly
once (because visiting vk more than once can only increase the path’s length). All
such paths have the following form:

vi, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, vj .

In other words, each of the paths is made up of a path from vi to vk with each
intermediate vertex numbered not higher than k − 1 and a path from vk to vj

with each intermediate vertex numbered not higher than k − 1. The situation is
depicted symbolically in Figure 8.15.

Since the length of the shortest path from vi to vk among the paths that use
intermediate vertices numbered not higher than k − 1 is equal to d

(k−1)
ik and the

length of the shortest path from vk to vj among the paths that use intermediate
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FIGURE 8.15 Underlying idea of Floyd’s algorithm.

vertices numbered not higher than k − 1is equal to d
(k−1)
kj , the length of the shortest

path among the paths that use the kth vertex is equal to d
(k−1)
ik + d

(k−1)
kj . Taking into

account the lengths of the shortest paths in both subsets leads to the following
recurrence:

d
(k)
ij = min{d(k−1)

ij , d
(k−1)
ik + d

(k−1)
kj } for k ≥ 1, d

(0)
ij = wij . (8.14)

To put it another way, the element in row i and column j of the current distance
matrix D(k−1) is replaced by the sum of the elements in the same row i and the
column k and in the same column j and the row k if and only if the latter sum is
smaller than its current value.

The application of Floyd’s algorithm to the graph in Figure 8.14 is illustrated
in Figure 8.16.

Here is pseudocode of Floyd’s algorithm. It takes advantage of the fact that
the next matrix in sequence (8.12) can be written over its predecessor.

ALGORITHM Floyd(W [1..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem
//Input: The weight matrix W of a graph with no negative-length cycle
//Output: The distance matrix of the shortest paths’ lengths
D ← W //is not necessary if W can be overwritten
for k ← 1 to n do

for i ← 1 to n do
for j ← 1 to n do

D[i, j ] ← min{D[i, j ], D[i, k] + D[k, j ]}
return D

Obviously, the time efficiency of Floyd’s algorithm is cubic—as is the time
efficiency of Warshall’s algorithm. In the next chapter, we examine Dijkstra’s
algorithm—another method for finding shortest paths.
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FIGURE 8.16 Application of Floyd’s algorithm to the digraph shown. Updated elements
are shown in bold.

Exercises 8.4

1. Apply Warshall’s algorithm to find the transitive closure of the digraph de-
fined by the following adjacency matrix:⎡

⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

2. a. Prove that the time efficiency of Warshall’s algorithm is cubic.

b. Explain why the time efficiency class of Warshall’s algorithm is inferior to
that of the traversal-based algorithm for sparse graphs represented by their
adjacency lists.
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3. Explain how to implement Warshall’s algorithm without using extra memory
for storing elements of the algorithm’s intermediate matrices.

4. Explain how to restructure the innermost loop of the algorithm Warshall to
make it run faster at least on some inputs.

5. Rewrite pseudocode of Warshall’s algorithm assuming that the matrix rows
are represented by bit strings on which the bitwise or operation can be per-
formed.

6. a. Explain how Warshall’s algorithm can be used to determine whether a
given digraph is a dag (directed acyclic graph). Is it a good algorithm for
this problem?

b. Is it a good idea to apply Warshall’s algorithm to find the transitive closure
of an undirected graph?

7. Solve the all-pairs shortest-path problem for the digraph with the following
weight matrix: ⎡

⎢⎢⎢⎢⎣
0 2 ∞ 1 8
6 0 3 2 ∞
∞ ∞ 0 4 ∞
∞ ∞ 2 0 3
3 ∞ ∞ ∞ 0

⎤
⎥⎥⎥⎥⎦

8. Prove that the next matrix in sequence (8.12) of Floyd’s algorithm can be
written over its predecessor.

9. Give an example of a graph or a digraph with negative weights for which
Floyd’s algorithm does not yield the correct result.

10. Enhance Floyd’s algorithm so that shortest paths themselves, not just their
lengths, can be found.

11. Jack Straws In the game of Jack Straws, a number of plastic or wooden
“straws” are dumped on the table and players try to remove them one by
one without disturbing the other straws. Here, we are only concerned with
whether various pairs of straws are connected by a path of touching straws.
Given a list of the endpoints for n > 1straws (as if they were dumped on a large
piece of graph paper), determine all the pairs of straws that are connected.
Note that touching is connecting, but also that two straws can be connected
indirectly via other connected straws. [1994 East-Central Regionals of the
ACM International Collegiate Programming Contest]

SUMMARY

Dynamic programming is a technique for solving problems with overlapping
subproblems. Typically, these subproblems arise from a recurrence relating a
solution to a given problem with solutions to its smaller subproblems of the
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same type. Dynamic programming suggests solving each smaller subproblem
once and recording the results in a table from which a solution to the original
problem can be then obtained.

Applicability of dynamic programming to an optimization problem requires
the problem to satisfy the principle of optimality: an optimal solution to any
of its instances must be made up of optimal solutions to its subinstances.

Among many other problems, the change-making problem with arbitrary coin
denominations can be solved by dynamic programming.

Solving a knapsack problem by a dynamic programming algorithm exempli-
fies an application of this technique to difficult problems of combinatorial
optimization.

The memory function technique seeks to combine the strengths of the top-
down and bottom-up approaches to solving problems with overlapping
subproblems. It does this by solving, in the top-down fashion but only
once, just the necessary subproblems of a given problem and recording their
solutions in a table.

Dynamic programming can be used for constructing an optimal binary search
tree for a given set of keys and known probabilities of searching for them.

Warshall’s algorithm for finding the transitive closure and Floyd’s algorithm
for the all-pairs shortest-paths problem are based on the idea that can be
interpreted as an application of the dynamic programming technique.
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9
Greedy Technique

Greed, for lack of a better word, is good! Greed is right! Greed works!
—Michael Douglas, US actor in the role of Gordon Gecko,

in the film Wall Street, 1987

Let us revisit the change-making problem faced, at least subconsciously, by
millions of cashiers all over the world: give change for a specific amount n

with the least number of coins of the denominations d1 > d2 > . . . > dm used in that
locale. (Here, unlike Section 8.1, we assume that the denominations are ordered in
decreasing order.) For example, the widely used coin denominations in the United
States are d1 = 25 (quarter), d2 = 10 (dime), d3 = 5 (nickel), and d4 = 1 (penny).
How would you give change with coins of these denominations of, say, 48 cents?
If you came up with the answer 1 quarter, 2 dimes, and 3 pennies, you followed—
consciously or not—a logical strategy of making a sequence of best choices among
the currently available alternatives. Indeed, in the first step, you could have given
one coin of any of the four denominations. “Greedy” thinking leads to giving one
quarter because it reduces the remaining amount the most, namely, to 23 cents. In
the second step, you had the same coins at your disposal, but you could not give
a quarter, because it would have violated the problem’s constraints. So your best
selection in this step was one dime, reducing the remaining amount to 13 cents.
Giving one more dime left you with 3 cents to be given with three pennies.

Is this solution to the instance of the change-making problem optimal? Yes, it
is. In fact, one can prove that the greedy algorithm yields an optimal solution for
every positive integer amount with these coin denominations. At the same time,
it is easy to give an example of coin denominations that do not yield an optimal
solution for some amounts—e.g., d1 = 25, d2 = 10, d3 = 1 and n = 30.

The approach applied in the opening paragraph to the change-making prob-
lem is called greedy. Computer scientists consider it a general design technique
despite the fact that it is applicable to optimization problems only. The greedy
approach suggests constructing a solution through a sequence of steps, each ex-
panding a partially constructed solution obtained so far, until a complete solution

315



316 Greedy Technique

to the problem is reached. On each step—and this is the central point of this
technique—the choice made must be:

feasible, i.e., it has to satisfy the problem’s constraints
locally optimal, i.e., it has to be the best local choice among all feasible choices
available on that step
irrevocable, i.e., once made, it cannot be changed on subsequent steps of the
algorithm

These requirements explain the technique’s name: on each step, it suggests
a “greedy” grab of the best alternative available in the hope that a sequence
of locally optimal choices will yield a (globally) optimal solution to the entire
problem. We refrain from a philosophical discussion of whether greed is good or
bad. (If you have not seen the movie from which the chapter’s epigraph is taken,
its hero did not end up well.) From our algorithmic perspective, the question is
whether such a greedy strategy works or not. As we shall see, there are problems
for which a sequence of locally optimal choices does yield an optimal solution for
every instance of the problem in question. However, there are others for which
this is not the case; for such problems, a greedy algorithm can still be of value if
we are interested in or have to be satisfied with an approximate solution.

In the first two sections of the chapter, we discuss two classic algorithms for the
minimum spanning tree problem: Prim’s algorithm and Kruskal’s algorithm. What
is remarkable about these algorithms is the fact that they solve the same problem
by applying the greedy approach in two different ways, and both of them always
yield an optimal solution. In Section 9.3, we introduce another classic algorithm—
Dijkstra’s algorithm for the shortest-path problem in a weighted graph. Section 9.4
is devoted to Huffman trees and their principal application, Huffman codes—an
important data compression method that can be interpreted as an application of
the greedy technique. Finally, a few examples of approximation algorithms based
on the greedy approach are discussed in Section 12.3.

As a rule, greedy algorithms are both intuitively appealing and simple. Given
an optimization problem, it is usually easy to figure out how to proceed in a greedy
manner, possibly after considering a few small instances of the problem. What is
usually more difficult is to prove that a greedy algorithm yields an optimal solution
(when it does). One of the common ways to do this is illustrated by the proof given
in Section 9.1: using mathematical induction, we show that a partially constructed
solution obtained by the greedy algorithm on each iteration can be extended to
an optimal solution to the problem.

The second way to prove optimality of a greedy algorithm is to show that
on each step it does at least as well as any other algorithm could in advancing
toward the problem’s goal. Consider, as an example, the following problem: find
the minimum number of moves needed for a chess knight to go from one corner
of a 100 × 100 board to the diagonally opposite corner. (The knight’s moves are
L-shaped jumps: two squares horizontally or vertically followed by one square in
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the perpendicular direction.) A greedy solution is clear here: jump as close to the
goal as possible on each move. Thus, if its start and finish squares are (1,1) and
(100, 100), respectively, a sequence of 66 moves such as

(1, 1) − (3, 2) − (4, 4) − . . . − (97, 97) − (99, 98) − (100, 100)

solves the problem. (The number k of two-move advances can be obtained from
the equation 1 + 3k = 100.) Why is this a minimum-move solution? Because if we
measure the distance to the goal by the Manhattan distance, which is the sum of
the difference between the row numbers and the difference between the column
numbers of two squares in question, the greedy algorithm decreases it by 3 on
each move—the best the knight can do.

The third way is simply to show that the final result obtained by a greedy
algorithm is optimal based on the algorithm’s output rather than the way it op-
erates. As an example, consider the problem of placing the maximum number of
chips on an 8 × 8 board so that no two chips are placed on the same or adjacent—
vertically, horizontally, or diagonally—squares. To follow the prescription of the
greedy strategy, we should place each new chip so as to leave as many available
squares as possible for next chips. For example, starting with the upper left corner
of the board, we will be able to place 16 chips as shown in Figure 9.1a. Why is
this solution optimal? To see why, partition the board into sixteen 4 × 4 squares
as shown in Figure 9.1b. Obviously, it is impossible to place more than one chip in
each of these squares, which implies that the total number of nonadjacent chips
on the board cannot exceed 16.

As a final comment, we should mention that a rather sophisticated theory
has been developed behind the greedy technique, which is based on the abstract
combinatorial structure called “matroid.” An interested reader can check such
books as [Cor09] as well as a variety of Internet resources on the subject.

FIGURE 9.1 (a) Placement of 16 chips on non-adjacent squares. (b) Partition of the board
proving impossibility of placing more than 16 chips.
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9.1 Prim’s Algorithm

The following problem arises naturally in many practical situations: given n points,
connect them in the cheapest possible way so that there will be a path between ev-
ery pair of points. It has direct applications to the design of all kinds of networks—
including communication, computer, transportation, and electrical—by providing
the cheapest way to achieve connectivity. It identifies clusters of points in data sets.
It has been used for classification purposes in archeology, biology, sociology, and
other sciences. It is also helpful for constructing approximate solutions to more
difficult problems such the traveling salesman problem (see Section 12.3).

We can represent the points given by vertices of a graph, possible connections
by the graph’s edges, and the connection costs by the edge weights. Then the
question can be posed as the minimum spanning tree problem, defined formally
as follows.

DEFINITION A spanning tree of an undirected connected graph is its connected
acyclic subgraph (i.e., a tree) that contains all the vertices of the graph. If such a
graph has weights assigned to its edges, a minimum spanning tree is its spanning
tree of the smallest weight, where the weight of a tree is defined as the sum of the
weights on all its edges. The minimum spanning tree problem is the problem of
finding a minimum spanning tree for a given weighted connected graph.

Figure 9.2 presents a simple example illustrating these notions.
If we were to try constructing a minimum spanning tree by exhaustive search,

we would face two serious obstacles. First, the number of spanning trees grows
exponentially with the graph size (at least for dense graphs). Second, generating
all spanning trees for a given graph is not easy; in fact, it is more difficult than
finding a minimum spanning tree for a weighted graph by using one of several
efficient algorithms available for this problem. In this section, we outline Prim’s
algorithm, which goes back to at least 19571 [Pri57].

1. Robert Prim rediscovered the algorithm published 27 years earlier by the Czech mathematician
Vojtěch Jarnı́k in a Czech journal.
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Prim’s algorithm constructs a minimum spanning tree through a sequence
of expanding subtrees. The initial subtree in such a sequence consists of a single
vertex selected arbitrarily from the set V of the graph’s vertices. On each iteration,
the algorithm expands the current tree in the greedy manner by simply attaching to
it the nearest vertex not in that tree. (By the nearest vertex, we mean a vertex not
in the tree connected to a vertex in the tree by an edge of the smallest weight. Ties
can be broken arbitrarily.) The algorithm stops after all the graph’s vertices have
been included in the tree being constructed. Since the algorithm expands a tree
by exactly one vertex on each of its iterations, the total number of such iterations
is n − 1, where n is the number of vertices in the graph. The tree generated by the
algorithm is obtained as the set of edges used for the tree expansions.

Here is pseudocode of this algorithm.

ALGORITHM Prim(G)

//Prim’s algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = 〈V, E〉
//Output: ET , the set of edges composing a minimum spanning tree of G

VT ← {v0} //the set of tree vertices can be initialized with any vertex
ET ← ∅

for i ← 1 to |V | − 1 do
find a minimum-weight edge e∗ = (v∗, u∗) among all the edges (v, u)

such that v is in VT and u is in V − VT

VT ← VT ∪ {u∗}
ET ← ET ∪ {e∗}

return ET

The nature of Prim’s algorithm makes it necessary to provide each vertex not
in the current tree with the information about the shortest edge connecting the
vertex to a tree vertex. We can provide such information by attaching two labels
to a vertex: the name of the nearest tree vertex and the length (the weight) of the
corresponding edge. Vertices that are not adjacent to any of the tree vertices can
be given the ∞ label indicating their “infinite” distance to the tree vertices and
a null label for the name of the nearest tree vertex. (Alternatively, we can split
the vertices that are not in the tree into two sets, the “fringe” and the “unseen.”
The fringe contains only the vertices that are not in the tree but are adjacent to at
least one tree vertex. These are the candidates from which the next tree vertex
is selected. The unseen vertices are all the other vertices of the graph, called
“unseen” because they are yet to be affected by the algorithm.) With such labels,
finding the next vertex to be added to the current tree T = 〈

VT , ET

〉
becomes a

simple task of finding a vertex with the smallest distance label in the set V − VT .

Ties can be broken arbitrarily.
After we have identified a vertex u∗ to be added to the tree, we need to perform

two operations:
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Move u∗ from the set V − VT to the set of tree vertices VT .
For each remaining vertex u in V − VT that is connected to u∗ by a shorter
edge than the u’s current distance label, update its labels by u∗ and the weight
of the edge between u∗ and u, respectively.2

Figure 9.3 demonstrates the application of Prim’s algorithm to a specific graph.
Does Prim’s algorithm always yield a minimum spanning tree? The answer

to this question is yes. Let us prove by induction that each of the subtrees Ti,

i = 0, . . . , n − 1, generated by Prim’s algorithm is a part (i.e., a subgraph) of some
minimum spanning tree. (This immediately implies, of course, that the last tree in
the sequence, Tn−1, is a minimum spanning tree itself because it contains all n

vertices of the graph.) The basis of the induction is trivial, since T0 consists of a
single vertex and hence must be a part of any minimum spanning tree. For the
inductive step, let us assume that Ti−1 is part of some minimum spanning tree T .
We need to prove that Ti, generated from Ti−1 by Prim’s algorithm, is also a part
of a minimum spanning tree. We prove this by contradiction by assuming that no
minimum spanning tree of the graph can contain Ti. Let ei = (v, u) be the minimum
weight edge from a vertex in Ti−1 to a vertex not in Ti−1 used by Prim’s algorithm to
expand Ti−1 to Ti. By our assumption, ei cannot belong to any minimum spanning
tree, including T . Therefore, if we add ei to T , a cycle must be formed (Figure 9.4).

In addition to edge ei = (v, u), this cycle must contain another edge (v′, u′)
connecting a vertex v′ ∈ Ti−1 to a vertex u′ that is not in Ti−1. (It is possible that
v′ coincides with v or u′ coincides with u but not both.) If we now delete the edge
(v′, u′) from this cycle, we will obtain another spanning tree of the entire graph
whose weight is less than or equal to the weight of T since the weight of ei is less
than or equal to the weight of (v′, u′). Hence, this spanning tree is a minimum
spanning tree, which contradicts the assumption that no minimum spanning tree
contains Ti. This completes the correctness proof of Prim’s algorithm.

How efficient is Prim’s algorithm? The answer depends on the data structures
chosen for the graph itself and for the priority queue of the set V − VT whose
vertex priorities are the distances to the nearest tree vertices. (You may want
to take another look at the example in Figure 9.3 to see that the set V − VT

indeed operates as a priority queue.) In particular, if a graph is represented by
its weight matrix and the priority queue is implemented as an unordered array,
the algorithm’s running time will be in �(|V |2). Indeed, on each of the |V | − 1
iterations, the array implementing the priority queue is traversed to find and delete
the minimum and then to update, if necessary, the priorities of the remaining
vertices.

We can also implement the priority queue as a min-heap. A min-heap is a
mirror image of the heap structure discussed in Section 6.4. (In fact, it can be im-
plemented by constructing a heap after negating all the key values given.) Namely,
a min-heap is a complete binary tree in which every element is less than or equal

2. If the implementation with the fringe/unseen split is pursued, all the unseen vertices adjacent to u∗
must also be moved to the fringe.
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FIGURE 9.3 Application of Prim’s algorithm. The parenthesized labels of a vertex in the
middle column indicate the nearest tree vertex and edge weight; selected
vertices and edges are shown in bold.
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FIGURE 9.4 Correctness proof of Prim’s algorithm.

to its children. All the principal properties of heaps remain valid for min-heaps,
with some obvious modifications. For example, the root of a min-heap contains the
smallest rather than the largest element. Deletion of the smallest element from
and insertion of a new element into a min-heap of size n are O(log n) operations,
and so is the operation of changing an element’s priority (see Problem 15 in this
section’s exercises).

If a graph is represented by its adjacency lists and the priority queue is im-
plemented as a min-heap, the running time of the algorithm is in O(|E| log |V |).
This is because the algorithm performs |V | − 1 deletions of the smallest element
and makes |E| verifications and, possibly, changes of an element’s priority in a
min-heap of size not exceeding |V |. Each of these operations, as noted earlier, is
a O(log |V |) operation. Hence, the running time of this implementation of Prim’s
algorithm is in

(|V | − 1 + |E|)O(log |V |) = O(|E| log |V |)
because, in a connected graph, |V | − 1 ≤ |E|.

In the next section, you will find another greedy algorithm for the minimum
spanning tree problem, which is “greedy” in a manner different from that of Prim’s
algorithm.

Exercises 9.1

1. Write pseudocode of the greedy algorithm for the change-making problem,
with an amount n and coin denominations d1 > d2 > . . . > dm as its input. What
is the time efficiency class of your algorithm?

2. Design a greedy algorithm for the assignment problem (see Section 3.4). Does
your greedy algorithm always yield an optimal solution?

3. Job scheduling Consider the problem of scheduling n jobs of known dura-
tions t1, t2, . . . , tn for execution by a single processor. The jobs can be executed
in any order, one job at a time. You want to find a schedule that minimizes
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the total time spent by all the jobs in the system. (The time spent by one job
in the system is the sum of the time spent by this job in waiting plus the time
spent on its execution.)

Design a greedy algorithm for this problem. Does the greedy algorithm
always yield an optimal solution?

4. Compatible intervals Given n open intervals (a1, b1), (a2, b2), . . . , (an, bn) on
the real line, each representing start and end times of some activity requiring
the same resource, the task is to find the largest number of these intervals so
that no two of them overlap. Investigate the three greedy algorithms based on
a. earliest start first.

b. shortest duration first.

c. earliest finish first.
For each of the three algorithms, either prove that the algorithm always yields
an optimal solution or give a counterexample showing this not to be the case.

5. Bridge crossing revisited Consider the generalization of the bridge crossing
puzzle (Problem 2 in Exercises 1.2) in which we have n > 1 people whose
bridge crossing times are t1, t2, . . . , tn. All the other conditions of the problem
remain the same: at most two people at a time can cross the bridge (and they
move with the speed of the slower of the two) and they must carry with them
the only flashlight the group has.

Design a greedy algorithm for this problem and find how long it will
take to cross the bridge by using this algorithm. Does your algorithm yield a
minimum crossing time for every instance of the problem? If it does—prove it;
if it does not—find an instance with the smallest number of people for which
this happens.

6. Averaging down There are n > 1 identical vessels, one of them with W pints
of water and the others empty. You are allowed to perform the following
operation: take two of the vessels and split the total amount of water in them
equally between them. The object is to achieve a minimum amount of water
in the vessel containing all the water in the initial set up by a sequence of such
operations. What is the best way to do this?

7. Rumor spreading There are n people, each in possession of a different
rumor. They want to share all the rumors with each other by sending electronic
messages. Assume that a sender includes all the rumors he or she knows at
the time the message is sent and that a message may only have one addressee.

Design a greedy algorithm that always yields the minimum number of
messages they need to send to guarantee that every one of them gets all the
rumors.

8. Bachet’s problem of weights Find an optimal set of n weights {w1, w2, . . . ,

wn} so that it would be possible to weigh on a balance scale any integer load
in the largest possible range from 1 to W , provided
a. weights can be put only on the free cup of the scale.



324 Greedy Technique

b. weights can be put on both cups of the scale.

9. a. Apply Prim’s algorithm to the following graph. Include in the priority
queue all the vertices not already in the tree.
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b. Apply Prim’s algorithm to the following graph. Include in the priority
queue only the fringe vertices (the vertices not in the current tree which
are adjacent to at least one tree vertex).
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10. The notion of a minimum spanning tree is applicable to a connected weighted
graph. Do we have to check a graph’s connectivity before applying Prim’s
algorithm, or can the algorithm do it by itself?

11. Does Prim’s algorithm always work correctly on graphs with negative edge
weights?

12. Let T be a minimum spanning tree of graph G obtained by Prim’s algorithm.
Let Gnew be a graph obtained by adding to G a new vertex and some edges,
with weights, connecting the new vertex to some vertices in G. Can we con-
struct a minimum spanning tree of Gnew by adding one of the new edges to
T ? If you answer yes, explain how; if you answer no, explain why not.

13. How can one use Prim’s algorithm to find a spanning tree of a connected graph
with no weights on its edges? Is it a good algorithm for this problem?

14. Prove that any weighted connected graph with distinct weights has exactly
one minimum spanning tree.

15. Outline an efficient algorithm for changing an element’s value in a min-heap.
What is the time efficiency of your algorithm?
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9.2 Kruskal’s Algorithm

In the previous section, we considered the greedy algorithm that “grows” a mini-
mum spanning tree through a greedy inclusion of the nearest vertex to the vertices
already in the tree. Remarkably, there is another greedy algorithm for the mini-
mum spanning tree problem that also always yields an optimal solution. It is named
Kruskal’s algorithm after Joseph Kruskal, who discovered this algorithm when
he was a second-year graduate student [Kru56]. Kruskal’s algorithm looks at a
minimum spanning tree of a weighted connected graph G = 〈V, E〉 as an acyclic
subgraph with |V | − 1 edges for which the sum of the edge weights is the smallest.
(It is not difficult to prove that such a subgraph must be a tree.) Consequently,
the algorithm constructs a minimum spanning tree as an expanding sequence of
subgraphs that are always acyclic but are not necessarily connected on the inter-
mediate stages of the algorithm.

The algorithm begins by sorting the graph’s edges in nondecreasing order of
their weights. Then, starting with the empty subgraph, it scans this sorted list,
adding the next edge on the list to the current subgraph if such an inclusion does
not create a cycle and simply skipping the edge otherwise.

ALGORITHM Kruskal(G)

//Kruskal’s algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = 〈V, E〉
//Output: ET , the set of edges composing a minimum spanning tree of G

sort E in nondecreasing order of the edge weights w(ei1
) ≤ . . . ≤ w(ei|E|)

ET ← ∅; ecounter ← 0 //initialize the set of tree edges and its size
k ← 0 //initialize the number of processed edges
while ecounter < |V | − 1 do

k ← k + 1
if ET ∪ {eik

} is acyclic
ET ← ET ∪ {eik

}; ecounter ← ecounter + 1
return ET

The correctness of Kruskal’s algorithm can be proved by repeating the essen-
tial steps of the proof of Prim’s algorithm given in the previous section. The fact
that ET is actually a tree in Prim’s algorithm but generally just an acyclic subgraph
in Kruskal’s algorithm turns out to be an obstacle that can be overcome.

Figure 9.5 demonstrates the application of Kruskal’s algorithm to the same
graph we used for illustrating Prim’s algorithm in Section 9.1. As you trace the
algorithm’s operations, note the disconnectedness of some of the intermediate
subgraphs.

Applying Prim’s and Kruskal’s algorithms to the same small graph by hand
may create the impression that the latter is simpler than the former. This impres-
sion is wrong because, on each of its iterations, Kruskal’s algorithm has to check
whether the addition of the next edge to the edges already selected would create a
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FIGURE 9.5 Application of Kruskal’s algorithm. Selected edges are shown in bold.
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FIGURE 9.6 New edge connecting two vertices may (a) or may not (b) create a cycle.

cycle. It is not difficult to see that a new cycle is created if and only if the new edge
connects two vertices already connected by a path, i.e., if and only if the two ver-
tices belong to the same connected component (Figure 9.6). Note also that each
connected component of a subgraph generated by Kruskal’s algorithm is a tree
because it has no cycles.

In view of these observations, it is convenient to use a slightly different
interpretation of Kruskal’s algorithm. We can consider the algorithm’s operations
as a progression through a series of forests containing all the vertices of a given
graph and some of its edges. The initial forest consists of |V | trivial trees, each
comprising a single vertex of the graph. The final forest consists of a single tree,
which is a minimum spanning tree of the graph. On each iteration, the algorithm
takes the next edge (u, v) from the sorted list of the graph’s edges, finds the trees
containing the vertices u and v, and, if these trees are not the same, unites them
in a larger tree by adding the edge (u, v).

Fortunately, there are efficient algorithms for doing so, including the crucial
check for whether two vertices belong to the same tree. They are called union-
find algorithms. We discuss them in the following subsection. With an efficient
union-find algorithm, the running time of Kruskal’s algorithm will be dominated
by the time needed for sorting the edge weights of a given graph. Hence, with an
efficient sorting algorithm, the time efficiency of Kruskal’s algorithm will be in
O(|E| log |E|).

Disjoint Subsets and Union-Find Algorithms

Kruskal’s algorithm is one of a number of applications that require a dynamic
partition of some n element set S into a collection of disjoint subsets S1, S2, . . . , Sk.

After being initialized as a collection of n one-element subsets, each containing
a different element of S, the collection is subjected to a sequence of intermixed
union and find operations. (Note that the number of union operations in any such
sequence must be bounded above by n − 1 because each union increases a subset’s
size at least by 1 and there are only n elements in the entire set S.) Thus, we are
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dealing here with an abstract data type of a collection of disjoint subsets of a finite
set with the following operations:

makeset(x) creates a one-element set {x}. It is assumed that this operation can
be applied to each of the elements of set S only once.
find(x) returns a subset containing x.
union(x, y) constructs the union of the disjoint subsets Sx and Sy containing
x and y, respectively, and adds it to the collection to replace Sx and Sy, which
are deleted from it.

For example, let S = {1, 2, 3, 4, 5, 6}. Then makeset(i) creates the set {i} and
applying this operation six times initializes the structure to the collection of six
singleton sets:

{1}, {2}, {3}, {4}, {5}, {6}.
Performing union(1, 4) and union(5, 2) yields

{1, 4}, {5, 2}, {3}, {6},
and, if followed by union(4, 5) and then by union(3, 6), we end up with the disjoint
subsets

{1, 4, 5, 2}, {3, 6}.
Most implementations of this abstract data type use one element from each of

the disjoint subsets in a collection as that subset’s representative. Some implemen-
tations do not impose any specific constraints on such a representative; others do
so by requiring, say, the smallest element of each subset to be used as the subset’s
representative. Also, it is usually assumed that set elements are (or can be mapped
into) integers.

There are two principal alternatives for implementing this data structure. The
first one, called the quick find , optimizes the time efficiency of the find operation;
the second one, called the quick union, optimizes the union operation.

The quick find uses an array indexed by the elements of the underlying set
S; the array’s values indicate the representatives of the subsets containing those
elements. Each subset is implemented as a linked list whose header contains the
pointers to the first and last elements of the list along with the number of elements
in the list (see Figure 9.7 for an example).

Under this scheme, the implementation of makeset(x) requires assigning the
corresponding element in the representative array to x and initializing the corre-
sponding linked list to a single node with the x value. The time efficiency of this
operation is obviously in �(1), and hence the initialization of n singleton subsets is
in �(n). The efficiency of find(x) is also in �(1): all we need to do is to retrieve the
x’s representative in the representative array. Executing union(x, y) takes longer.
A straightforward solution would simply append the y’s list to the end of the x’s
list, update the information about their representative for all the elements in the
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subset representatives
element index representative

1 1
2 1
3 3
4 1
5 1
6 3

list 1

list 2

list 3

list 4

list 5

list 6

size last first

4 1 4 5 2 null

0 null

null null

null

null

2 3

0

null null0

null null0

6

FIGURE 9.7 Linked-list representation of subsets {1, 4, 5, 2} and {3, 6} obtained by quick
find after performing union(1, 4), union(5, 2), union(4, 5), and union(3, 6).
The lists of size 0 are considered deleted from the collection.

y list, and then delete the y’s list from the collection. It is easy to verify, however,
that with this algorithm the sequence of union operations

union(2, 1), union(3, 2), . . . , union(i + 1, i), . . . , union(n, n − 1)

runs in �(n2) time, which is slow compared with several known alternatives.
A simple way to improve the overall efficiency of a sequence of union oper-

ations is to always append the shorter of the two lists to the longer one, with ties
broken arbitrarily. Of course, the size of each list is assumed to be available by, say,
storing the number of elements in the list’s header. This modification is called the
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1

54

2

3

6

1

4 5

62

(a) (b)

3

FIGURE 9.8 (a) Forest representation of subsets {1, 4, 5, 2} and {3, 6} used by quick
union. (b) Result of union(5, 6).

union by size. Though it does not improve the worst-case efficiency of a single ap-
plication of the union operation (it is still in �(n)), the worst-case running time of
any legitimate sequence of union-by-size operations turns out to be in O(n log n).3

Here is a proof of this assertion. Let ai be an element of set S whose disjoint
subsets we manipulate, and let Ai be the number of times ai’s representative is
updated in a sequence of union-by-size operations. How large can Ai get if set S

has n elements? Each time ai’s representative is updated, ai must be in a smaller
subset involved in computing the union whose size will be at least twice as large as
the size of the subset containing ai. Hence, when ai’s representative is updated for
the first time, the resulting set will have at least two elements; when it is updated
for the second time, the resulting set will have at least four elements; and, in
general, if it is updated Ai times, the resulting set will have at least 2Ai elements.
Since the entire set S has n elements, 2Ai ≤ n and hence Ai ≤ log2 n. Therefore,
the total number of possible updates of the representatives for all n elements in S

will not exceed n log2 n.

Thus, for union by size, the time efficiency of a sequence of at most n − 1
unions and m finds is in O(n log n + m).

The quick union—the second principal alternative for implementing disjoint
subsets—represents each subset by a rooted tree. The nodes of the tree contain
the subset’s elements (one per node), with the root’s element considered the
subset’s representative; the tree’s edges are directed from children to their parents
(Figure 9.8). In addition, a mapping of the set elements to their tree nodes—
implemented, say, as an array of pointers—is maintained. This mapping is not
shown in Figure 9.8 for the sake of simplicity.

For this implementation, makeset(x) requires the creation of a single-node
tree, which is a �(1) operation; hence, the initialization of n singleton subsets is in
�(n). A union(x, y) is implemented by attaching the root of the y’s tree to the root
of the x’s tree (and deleting the y’s tree from the collection by making the pointer
to its root null). The time efficiency of this operation is clearly �(1). A find(x) is

3. This is a specific example of the usefulness of the amortized efficiency we mentioned back in Chapter 2.
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T3
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FIGURE 9.9 Path compression.

performed by following the pointer chain from the node containing x to the tree’s
root whose element is returned as the subset’s representative. Accordingly, the
time efficiency of a single find operation is in O(n) because a tree representing a
subset can degenerate into a linked list with n nodes.

This time bound can be improved. The straightforward way for doing so is to
always perform a union operation by attaching a smaller tree to the root of a larger
one, with ties broken arbitrarily. The size of a tree can be measured either by the
number of nodes (this version is called union by size) or by its height (this version
is called union by rank). Of course, these options require storing, for each node of
the tree, either the number of node descendants or the height of the subtree rooted
at that node, respectively. One can easily prove that in either case the height of the
tree will be logarithmic, making it possible to execute each find in O(log n) time.
Thus, for quick union, the time efficiency of a sequence of at most n − 1 unions
and m finds is in O(n + m log n).

In fact, an even better efficiency can be obtained by combining either vari-
ety of quick union with path compression. This modification makes every node
encountered during the execution of a find operation point to the tree’s root (Fig-
ure 9.9). According to a quite sophisticated analysis that goes beyond the level
of this book (see [Tar84]), this and similar techniques improve the efficiency of a
sequence of at most n − 1 unions and m finds to only slightly worse than linear.

Exercises 9.2

1. Apply Kruskal’s algorithm to find a minimum spanning tree of the following
graphs.
a.

b c

a ed

1

3 4

6 2

5 6
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b.
a

d

h

c

g

k

4

4 4

5

5 5
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e
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2. Indicate whether the following statements are true or false:
a. If e is a minimum-weight edge in a connected weighted graph, it must be

among edges of at least one minimum spanning tree of the graph.

b. If e is a minimum-weight edge in a connected weighted graph, it must be
among edges of each minimum spanning tree of the graph.

c. If edge weights of a connected weighted graph are all distinct, the graph
must have exactly one minimum spanning tree.

d. If edge weights of a connected weighted graph are not all distinct, the graph
must have more than one minimum spanning tree.

3. What changes, if any, need to be made in algorithm Kruskal to make it find
a minimum spanning forest for an arbitrary graph? (A minimum spanning
forest is a forest whose trees are minimum spanning trees of the graph’s
connected components.)

4. Does Kruskal’s algorithm work correctly on graphs that have negative edge
weights?

5. Design an algorithm for finding a maximum spanning tree—a spanning tree
with the largest possible edge weight—of a weighted connected graph.

6. Rewrite pseudocode of Kruskal’s algorithm in terms of the operations of the
disjoint subsets’ ADT.

7. Prove the correctness of Kruskal’s algorithm.

8. Prove that the time efficiency of find(x) is in O(log n) for the union-by-size
version of quick union.

9. Find at least two Web sites with animations of Kruskal’s and Prim’s algorithms.
Discuss their merits and demerits.

10. Design and conduct an experiment to empirically compare the efficiencies
of Prim’s and Kruskal’s algorithms on random graphs of different sizes and
densities.
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11. Steiner tree Four villages are located at the vertices of a unit square in the
Euclidean plane. You are asked to connect them by the shortest network of
roads so that there is a path between every pair of the villages along those
roads. Find such a network.

12. Write a program generating a random maze based on
a. Prim’s algorithm.

b. Kruskal’s algorithm.

9.3 Dijkstra’s Algorithm

In this section, we consider the single-source shortest-paths problem: for a given
vertex called the source in a weighted connected graph, find shortest paths to all
its other vertices. It is important to stress that we are not interested here in a
single shortest path that starts at the source and visits all the other vertices. This
would have been a much more difficult problem (actually, a version of the traveling
salesman problem introduced in Section 3.4 and discussed again later in the book).
The single-source shortest-paths problem asks for a family of paths, each leading
from the source to a different vertex in the graph, though some paths may, of
course, have edges in common.

A variety of practical applications of the shortest-paths problem have made
the problem a very popular object of study. The obvious but probably most widely
used applications are transportation planning and packet routing in communi-
cation networks, including the Internet. Multitudes of less obvious applications
include finding shortest paths in social networks, speech recognition, document
formatting, robotics, compilers, and airline crew scheduling. In the world of enter-
tainment, one can mention pathfinding in video games and finding best solutions
to puzzles using their state-space graphs (see Section 6.6 for a very simple example
of the latter).

There are several well-known algorithms for finding shortest paths, including
Floyd’s algorithm for the more general all-pairs shortest-paths problem discussed
in Chapter 8. Here, we consider the best-known algorithm for the single-source
shortest-paths problem, called Dijkstra’s algorithm.4 This algorithm is applicable
to undirected and directed graphs with nonnegative weights only. Since in most ap-
plications this condition is satisfied, the limitation has not impaired the popularity
of Dijkstra’s algorithm.

Dijkstra’s algorithm finds the shortest paths to a graph’s vertices in order of
their distance from a given source. First, it finds the shortest path from the source

4. Edsger W. Dijkstra (1930–2002), a noted Dutch pioneer of the science and industry of computing,
discovered this algorithm in the mid-1950s. Dijkstra said about his algorithm: “This was the first graph
problem I ever posed myself and solved. The amazing thing was that I didn’t publish it. It was not
amazing at the time. At the time, algorithms were hardly considered a scientific topic.”
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u*

v*

v0

FIGURE 9.10 Idea of Dijkstra’s algorithm. The subtree of the shortest paths already
found is shown in bold. The next nearest to the source v0 vertex, u∗, is
selected by comparing the lengths of the subtree’s paths increased by
the distances to vertices adjacent to the subtree’s vertices.

to a vertex nearest to it, then to a second nearest, and so on. In general, before its
ith iteration commences, the algorithm has already identified the shortest paths to
i − 1 other vertices nearest to the source. These vertices, the source, and the edges
of the shortest paths leading to them from the source form a subtree Ti of the given
graph (Figure 9.10). Since all the edge weights are nonnegative, the next vertex
nearest to the source can be found among the vertices adjacent to the vertices of
Ti. The set of vertices adjacent to the vertices in Ti can be referred to as “fringe
vertices”; they are the candidates from which Dijkstra’s algorithm selects the next
vertex nearest to the source. (Actually, all the other vertices can be treated as
fringe vertices connected to tree vertices by edges of infinitely large weights.) To
identify the ith nearest vertex, the algorithm computes, for every fringe vertex u,
the sum of the distance to the nearest tree vertex v (given by the weight of the
edge (v, u)) and the length dv of the shortest path from the source to v (previously
determined by the algorithm) and then selects the vertex with the smallest such
sum. The fact that it suffices to compare the lengths of such special paths is the
central insight of Dijkstra’s algorithm.

To facilitate the algorithm’s operations, we label each vertex with two labels.
The numeric label d indicates the length of the shortest path from the source to
this vertex found by the algorithm so far; when a vertex is added to the tree, d

indicates the length of the shortest path from the source to that vertex. The other
label indicates the name of the next-to-last vertex on such a path, i.e., the parent of
the vertex in the tree being constructed. (It can be left unspecified for the source
s and vertices that are adjacent to none of the current tree vertices.) With such
labeling, finding the next nearest vertex u∗ becomes a simple task of finding a
fringe vertex with the smallest d value. Ties can be broken arbitrarily.

After we have identified a vertex u∗ to be added to the tree, we need to perform
two operations:
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Move u∗ from the fringe to the set of tree vertices.
For each remaining fringe vertex u that is connected to u∗ by an edge of
weight w(u∗, u) such that du∗ + w(u∗, u) < du, update the labels of u by u∗
and du∗ + w(u∗, u), respectively.

Figure 9.11 demonstrates the application of Dijkstra’s algorithm to a specific
graph.

The labeling and mechanics of Dijkstra’s algorithm are quite similar to those
used by Prim’s algorithm (see Section 9.1). Both of them construct an expanding
subtree of vertices by selecting the next vertex from the priority queue of the
remaining vertices. It is important not to mix them up, however. They solve
different problems and therefore operate with priorities computed in a different
manner: Dijkstra’s algorithm compares path lengths and therefore must add edge
weights, while Prim’s algorithm compares the edge weights as given.

Now we can give pseudocode of Dijkstra’s algorithm. It is spelled out—
in more detail than Prim’s algorithm was in Section 9.1—in terms of explicit
operations on two sets of labeled vertices: the set VT of vertices for which a shortest
path has already been found and the priority queue Q of the fringe vertices. (Note
that in the following pseudocode, VT contains a given source vertex and the fringe
contains the vertices adjacent to it after iteration 0 is completed.)

ALGORITHM Dijkstra(G, s)

//Dijkstra’s algorithm for single-source shortest paths
//Input: A weighted connected graph G = 〈V, E〉 with nonnegative weights
// and its vertex s

//Output: The length dv of a shortest path from s to v

// and its penultimate vertex pv for every vertex v in V

Initialize(Q) //initialize priority queue to empty
for every vertex v in V

dv ← ∞; pv ← null
Insert(Q, v, dv) //initialize vertex priority in the priority queue

ds ← 0; Decrease(Q, s, ds) //update priority of s with ds

VT ← ∅

for i ← 0 to |V | − 1 do
u∗ ← DeleteMin(Q) //delete the minimum priority element
VT ← VT ∪ {u∗}
for every vertex u in V − VT that is adjacent to u∗ do

if du∗ + w(u∗, u) < du

du ← du∗ + w(u∗, u); pu ← u∗
Decrease(Q, u, du)

The time efficiency of Dijkstra’s algorithm depends on the data structures used
for implementing the priority queue and for representing an input graph itself.
For the reasons explained in the analysis of Prim’s algorithm in Section 9.1, it is
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b c

a ed

4

7 4

52
3 6

Tree vertices Remaining vertices Illustration

a(−, 0) b(a, 3) c(−, ∞) d(a, 7) e(−, ∞)
b c

a ed

4

7 4

52
3 6

b(a, 3) c(b, 3 + 4) d(b, 3 + 2) e(−, ∞)
b c

a ed

4

7 4

52
3 6

d(b, 5) c(b, 7) e(d, 5 + 4)
b c

a ed

4

7 4

52
3 6

c(b, 7) e(d, 9)
b c

a ed

4

7 4

52
3 6

e(d, 9)

The shortest paths (identified by following nonnumeric labels backward from a
destination vertex in the left column to the source) and their lengths (given by
numeric labels of the tree vertices) are as follows:

from a to b : a − b of length 3

from a to d : a − b − d of length 5

from a to c : a − b − c of length 7

from a to e : a − b − d − e of length 9

FIGURE 9.11 Application of Dijkstra’s algorithm. The next closest vertex is shown in
bold.
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in �(|V |2) for graphs represented by their weight matrix and the priority queue
implemented as an unordered array. For graphs represented by their adjacency
lists and the priority queue implemented as a min-heap, it is in O(|E| log |V |). A
still better upper bound can be achieved for both Prim’s and Dijkstra’s algorithms
if the priority queue is implemented using a sophisticated data structure called
the Fibonacci heap (e.g., [Cor09]). However, its complexity and a considerable
overhead make such an improvement primarily of theoretical value.

Exercises 9.3

1. Explain what adjustments if any need to be made in Dijkstra’s algorithm
and/or in an underlying graph to solve the following problems.
a. Solve the single-source shortest-paths problem for directed weighted

graphs.

b. Find a shortest path between two given vertices of a weighted graph or
digraph. (This variation is called the single-pair shortest-path problem.)

c. Find the shortest paths to a given vertex from each other vertex of a
weighted graph or digraph. (This variation is called the single-destination
shortest-paths problem.)

d. Solve the single-source shortest-paths problem in a graph with nonnegative
numbers assigned to its vertices (and the length of a path defined as the sum
of the vertex numbers on the path).

2. Solve the following instances of the single-source shortest-paths problem with
vertex a as the source:
a.

b c

a ed
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2 5

7 4
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3. Give a counterexample that shows that Dijkstra’s algorithm may not work for
a weighted connected graph with negative weights.

4. Let T be a tree constructed by Dijkstra’s algorithm in the process of solving
the single-source shortest-paths problem for a weighted connected graph G.
a. True or false: T is a spanning tree of G?

b. True or false: T is a minimum spanning tree of G?

5. Write pseudocode for a simpler version of Dijkstra’s algorithm that finds
only the distances (i.e., the lengths of shortest paths but not shortest paths
themselves) from a given vertex to all other vertices of a graph represented
by its weight matrix.

6. Prove the correctness of Dijkstra’s algorithm for graphs with positive weights.

7. Design a linear-time algorithm for solving the single-source shortest-paths
problem for dags (directed acyclic graphs) represented by their adjacency lists.

8. Explain how the minimum-sum descent problem (Problem 8 in Exercises 8.1)
can be solved by Dijkstra’s algorithm.

9. Shortest-path modeling Assume you have a model of a weighted connected
graph made of balls (representing the vertices) connected by strings of appro-
priate lengths (representing the edges).
a. Describe how you can solve the single-pair shortest-path problem with this

model.

b. Describe how you can solve the single-source shortest-paths problem with
this model.

10. Revisit the exercise from Section 1.3 about determining the best route for a
subway passenger to take from one designated station to another in a well-
developed subway system like those in Washington, DC, or London, UK.
Write a program for this task.

9.4 Huffman Trees and Codes

Suppose we have to encode a text that comprises symbols from some n-symbol
alphabet by assigning to each of the text’s symbols some sequence of bits called
the codeword . For example, we can use a fixed-length encoding that assigns to
each symbol a bit string of the same length m (m ≥ log2 n). This is exactly what
the standard ASCII code does. One way of getting a coding scheme that yields a
shorter bit string on the average is based on the old idea of assigning shorter code-
words to more frequent symbols and longer codewords to less frequent symbols.
This idea was used, in particular, in the telegraph code invented in the mid-19th
century by Samuel Morse. In that code, frequent letters such as e (.) and a (.−)

are assigned short sequences of dots and dashes while infrequent letters such as q

(− − .−) and z (− − ..) have longer ones.
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Variable-length encoding, which assigns codewords of different lengths to
different symbols, introduces a problem that fixed-length encoding does not have.
Namely, how can we tell how many bits of an encoded text represent the first (or,
more generally, the ith) symbol? To avoid this complication, we can limit ourselves
to the so-called prefix-free (or simply prefix) codes. In a prefix code, no codeword
is a prefix of a codeword of another symbol. Hence, with such an encoding, we
can simply scan a bit string until we get the first group of bits that is a codeword
for some symbol, replace these bits by this symbol, and repeat this operation until
the bit string’s end is reached.

If we want to create a binary prefix code for some alphabet, it is natural to
associate the alphabet’s symbols with leaves of a binary tree in which all the left
edges are labeled by 0 and all the right edges are labeled by 1. The codeword of a
symbol can then be obtained by recording the labels on the simple path from the
root to the symbol’s leaf. Since there is no simple path to a leaf that continues to
another leaf, no codeword can be a prefix of another codeword; hence, any such
tree yields a prefix code.

Among the many trees that can be constructed in this manner for a given
alphabet with known frequencies of the symbol occurrences, how can we construct
a tree that would assign shorter bit strings to high-frequency symbols and longer
ones to low-frequency symbols? It can be done by the following greedy algorithm,
invented by David Huffman while he was a graduate student at MIT [Huf52].

Huffman’s algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the
alphabet given. Record the frequency of each symbol in its tree’s root
to indicate the tree’s weight. (More generally, the weight of a tree will
be equal to the sum of the frequencies in the tree’s leaves.)

Step 2 Repeat the following operation until a single tree is obtained. Find
two trees with the smallest weight (ties can be broken arbitrarily, but
see Problem 2 in this section’s exercises). Make them the left and right
subtree of a new tree and record the sum of their weights in the root
of the new tree as its weight.

A tree constructed by the above algorithm is called a Huffman tree. It
defines—in the manner described above—a Huffman code.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following
occurrence frequencies in a text made up of these symbols:

symbol A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

The Huffman tree construction for this input is shown in Figure 9.12.
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FIGURE 9.12 Example of constructing a Huffman coding tree.

The resulting codewords are as follows:

symbol A B C D _

frequency 0.35 0.1 0.2 0.2 0.15
codeword 11 100 00 01 101
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Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.
With the occurrence frequencies given and the codeword lengths obtained,

the average number of bits per symbol in this code is

2 . 0.35 + 3 . 0.1 + 2 . 0.2 + 2 . 0.2 + 3 . 0.15 = 2.25.

Had we used a fixed-length encoding for the same alphabet, we would have to
use at least 3 bits per each symbol. Thus, for this toy example, Huffman’s code
achieves the compression ratio—a standard measure of a compression algorithm’s
effectiveness—of (3 − 2.25)/3 . 100%= 25%. In other words, Huffman’s encoding
of the text will use 25% less memory than its fixed-length encoding. (Extensive
experiments with Huffman codes have shown that the compression ratio for this
scheme typically falls between 20% and 80%, depending on the characteristics of
the text being compressed.)

Huffman’s encoding is one of the most important file-compression methods.
In addition to its simplicity and versatility, it yields an optimal, i.e., minimal-length,
encoding (provided the frequencies of symbol occurrences are independent and
known in advance). The simplest version of Huffman compression calls, in fact,
for a preliminary scanning of a given text to count the frequencies of symbol
occurrences in it. Then these frequencies are used to construct a Huffman coding
tree and encode the text as described above. This scheme makes it necessary,
however, to include the coding table into the encoded text to make its decoding
possible. This drawback can be overcome by using dynamic Huffman encoding,
in which the coding tree is updated each time a new symbol is read from the source
text. Further, modern alternatives such as Lempel-Ziv algorithms (e.g., [Say05])
assign codewords not to individual symbols but to strings of symbols, allowing
them to achieve better and more robust compressions in many applications.

It is important to note that applications of Huffman’s algorithm are not limited
to data compression. Suppose we have n positive numbers w1, w2, . . . , wn that
have to be assigned to n leaves of a binary tree, one per node. If we define the
weighted path length as the sum

∑n
i=1 liwi, where li is the length of the simple

path from the root to the ith leaf, how can we construct a binary tree with
minimum weighted path length? It is this more general problem that Huffman’s
algorithm actually solves. (For the coding application, li and wi are the length of
the codeword and the frequency of the ith symbol, respectively.)

This problem arises in many situations involving decision making. Consider,
for example, the game of guessing a chosen object from n possibilities (say, an
integer between 1 and n) by asking questions answerable by yes or no. Different
strategies for playing this game can be modeled by decision trees5 such as those
depicted in Figure 9.13 for n = 4. The length of the simple path from the root to a
leaf in such a tree is equal to the number of questions needed to get to the chosen
number represented by the leaf. If number i is chosen with probability pi, the sum

5. Decision trees are discussed in more detail in Section 11.2.
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FIGURE 9.13 Two decision trees for guessing an integer between 1 and 4.

∑n
i=1 lipi, where li is the length of the path from the root to the ith leaf, indicates

the average number of questions needed to “guess” the chosen number with a
game strategy represented by its decision tree. If each of the numbers is chosen
with the same probability of 1/n, the best strategy is to successively eliminate half
(or almost half) the candidates as binary search does. This may not be the case
for arbitrary pi’s, however. For example, if n = 4 and p1 = 0.1, p2 = 0.2, p3 = 0.3,
and p4 = 0.4, the minimum weighted path tree is the rightmost one in Figure 9.13.
Thus, we need Huffman’s algorithm to solve this problem in its general case.

Note that this is the second time we are encountering the problem of con-
structing an optimal binary tree. In Section 8.3, we discussed the problem of
constructing an optimal binary search tree with positive numbers (the search prob-
abilities) assigned to every node of the tree. In this section, given numbers are
assigned just to leaves. The latter problem turns out to be easier: it can be solved
by the greedy algorithm, whereas the former is solved by the more complicated
dynamic programming algorithm.

Exercises 9.4

1. a. Construct a Huffman code for the following data:

symbol A B C D _

frequency 0.4 0.1 0.2 0.15 0.15

b. Encode ABACABAD using the code of question (a).

c. Decode 100010111001010 using the code of question (a).

2. For data transmission purposes, it is often desirable to have a code with a
minimum variance of the codeword lengths (among codes of the same average
length). Compute the average and variance of the codeword length in two
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Huffman codes that result from a different tie breaking during a Huffman
code construction for the following data:

symbol A B C D E

probability 0.1 0.1 0.2 0.2 0.4

3. Indicate whether each of the following properties is true for every Huffman
code.
a. The codewords of the two least frequent symbols have the same length.

b. The codeword’s length of a more frequent symbol is always smaller than
or equal to the codeword’s length of a less frequent one.

4. What is the maximal length of a codeword possible in a Huffman encoding of
an alphabet of n symbols?

5. a. Write pseudocode of the Huffman-tree construction algorithm.

b. What is the time efficiency class of the algorithm for constructing a Huff-
man tree as a function of the alphabet size?

6. Show that a Huffman tree can be constructed in linear time if the alphabet
symbols are given in a sorted order of their frequencies.

7. Given a Huffman coding tree, which algorithm would you use to get the
codewords for all the symbols? What is its time-efficiency class as a function
of the alphabet size?

8. Explain how one can generate a Huffman code without an explicit generation
of a Huffman coding tree.

9. a. Write a program that constructs a Huffman code for a given English text
and encode it.

b. Write a program for decoding of an English text which has been encoded
with a Huffman code.

c. Experiment with your encoding program to find a range of typical compres-
sion ratios for Huffman’s encoding of English texts of, say, 1000 words.

d. Experiment with your encoding program to find out how sensitive the
compression ratios are to using standard estimates of frequencies instead
of actual frequencies of symbol occurrences in English texts.

10. Card guessing Design a strategy that minimizes the expected number of
questions asked in the following game [Gar94]. You have a deck of cards that
consists of one ace of spades, two deuces of spades, three threes, and on up
to nine nines, making 45 cards in all. Someone draws a card from the shuffled
deck, which you have to identify by asking questions answerable with yes
or no.
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SUMMARY

The greedy technique suggests constructing a solution to an optimization
problem through a sequence of steps, each expanding a partially constructed
solution obtained so far, until a complete solution to the problem is reached.
On each step, the choice made must be feasible, locally optimal, and
irrevocable.

Prim’s algorithm is a greedy algorithm for constructing a minimum spanning
tree of a weighted connected graph. It works by attaching to a previously
constructed subtree a vertex closest to the vertices already in the tree.

Kruskal’s algorithm is another greedy algorithm for the minimum spanning
tree problem. It constructs a minimum spanning tree by selecting edges
in nondecreasing order of their weights provided that the inclusion does not
create a cycle. Checking the latter condition efficiently requires an application
of one of the so-called union-find algorithms.

Dijkstra’s algorithm solves the single-source shortest-path problem of finding
shortest paths from a given vertex (the source) to all the other vertices of a
weighted graph or digraph. It works as Prim’s algorithm but compares path
lengths rather than edge lengths. Dijkstra’s algorithm always yields a correct
solution for a graph with nonnegative weights.

A Huffman tree is a binary tree that minimizes the weighted path length from
the root to the leaves of predefined weights. The most important application
of Huffman trees is Huffman codes.

A Huffman code is an optimal prefix-free variable-length encoding scheme
that assigns bit strings to symbols based on their frequencies in a given text.
This is accomplished by a greedy construction of a binary tree whose leaves
represent the alphabet symbols and whose edges are labeled with 0’s and 1’s.
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The most successful men in the end are those whose success is the result of
steady accretion.

—Alexander Graham Bell (1835–1910)

The greedy strategy, considered in the preceding chapter, constructs a solution
to an optimization problem piece by piece, always adding a locally optimal

piece to a partially constructed solution. In this chapter, we discuss a different
approach to designing algorithms for optimization problems. It starts with some
feasible solution (a solution that satisfies all the constraints of the problem) and
proceeds to improve it by repeated applications of some simple step. This step
typically involves a small, localized change yielding a feasible solution with an
improved value of the objective function. When no such change improves the
value of the objective function, the algorithm returns the last feasible solution as
optimal and stops.

There can be several obstacles to the successful implementation of this idea.
First, we need an initial feasible solution. For some problems, we can always start
with a trivial solution or use an approximate solution obtained by some other (e.g.,
greedy) algorithm. But for others, finding an initial solution may require as much
effort as solving the problem after a feasible solution has been identified. Second,
it is not always clear what changes should be allowed in a feasible solution so that
we can check efficiently whether the current solution is locally optimal and, if not,
replace it with a better one. Third—and this is the most fundamental difficulty—
is an issue of local versus global extremum (maximum or minimum). Think about
the problem of finding the highest point in a hilly area with no map on a foggy day.
A logical thing to do would be to start walking “up the hill” from the point you are
at until it becomes impossible to do so because no direction would lead up. You
will have reached a local highest point, but because of a limited feasibility, there
will be no simple way to tell whether the point is the highest (global maximum
you are after) in the entire area.

Fortunately, there are important problems that can be solved by iterative-
improvement algorithms. The most important of them is linear programming.

345
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We have already encountered this topic in Section 6.6. Here, in Section 10.1,
we introduce the simplex method, the classic algorithm for linear programming.
Discovered by the U.S. mathematician George B. Dantzig in 1947, this algorithm
has proved to be one of the most consequential achievements in the history of
algorithmics.

In Section 10.2, we consider the important problem of maximizing the amount
of flow that can be sent through a network with links of limited capacities. This
problem is a special case of linear programming. However, its special structure
makes it possible to solve the problem by algorithms that are more efficient than
the simplex method. We outline the classic iterative-improvement algorithm for
this problem, discovered by the American mathematicians L. R. Ford, Jr., and
D. R. Fulkerson in the 1950s.

The last two sections of the chapter deal with bipartite matching. This is
the problem of finding an optimal pairing of elements taken from two disjoint
sets. Examples include matching workers and jobs, high school graduates and
colleges, and men and women for marriage. Section 10.3 deals with the problem
of maximizing the number of matched pairs; Section 10.4 is concerned with the
matching stability.

We also discuss several iterative-improvement algorithms in Section 12.3,
where we consider approximation algorithms for the traveling salesman and knap-
sack problems. Other examples of iterative-improvement algorithms can be found
in the algorithms textbook by Moret and Shapiro [Mor91], books on continuous
and discrete optimization (e.g., [Nem89]), and the literature on heuristic search
(e.g., [Mic10]).

10.1 The Simplex Method

We have already encountered linear programming (see Section 6.6)—the general
problem of optimizing a linear function of several variables subject to a set of
linear constraints:

maximize (or minimize) c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn ≤ (or ≥ or =) bi for i = 1, . . . , m

x1 ≥ 0, . . . , xn ≥ 0. (10.1)

We mentioned there that many important practical problems can be modeled as
instances of linear programming. Two researchers, L. V. Kantorovich of the former
Soviet Union and the Dutch-American T. C. Koopmans, were even awarded the
Nobel Prize in 1975 for their contributions to linear programming theory and
its applications to economics. Apparently because there is no Nobel Prize in
mathematics, the Royal Swedish Academy of Sciences failed to honor the U.S.
mathematician G. B. Dantzig, who is universally recognized as the father of linear
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programming in its modern form and the inventor of the simplex method, the
classic algorithm for solving such problems.1

Geometric Interpretation of Linear Programming

Before we introduce a general method for solving linear programming problems,
let us consider a small example, which will help us to see the fundamental prop-
erties of such problems.

EXAMPLE 1 Consider the following linear programming problem in two vari-
ables:

maximize 3x + 5y

subject to x + y ≤ 4

x + 3y ≤ 6

x ≥ 0, y ≥ 0.

(10.2)

By definition, a feasible solution to this problem is any point (x, y) that satisfies
all the constraints of the problem; the problem’s feasible region is the set of all
its feasible points. It is instructive to sketch the feasible region in the Cartesian
plane. Recall that any equation ax + by = c, where coefficients a and b are not
both equal to zero, defines a straight line. Such a line divides the plane into two
half-planes: for all the points in one of them, ax + by < c, while for all the points
in the other, ax + by > c. (It is easy to determine which of the two half-planes
is which: take any point (x0, y0) not on the line ax + by = c and check which of
the two inequalities hold, ax0 + by0 > c or ax0 + by0 < c.) In particular, the set of
points defined by inequality x + y ≤ 4 comprises the points on and below the line
x + y = 4, and the set of points defined by inequality x + 3y ≤ 6 comprises the
points on and below the line x + 3y = 6. Since the points of the feasible region
must satisfy all the constraints of the problem, the feasible region is obtained by
the intersection of these two half-planes and the first quadrant of the Cartesian
plane defined by the nonnegativity constraints x ≥ 0, y ≥ 0 (see Figure 10.1). Thus,
the feasible region for problem (10.2) is the convex polygon with the vertices (0, 0),
(4, 0), (0, 2), and (3, 1). (The last point, which is the point of intersection of the
lines x + y = 4 and x + 3y = 6, is obtained by solving the system of these two linear
equations.) Our task is to find an optimal solution, a point in the feasible region
with the largest value of the objective function z = 3x + 5y.

Are there feasible solutions for which the value of the objective function
equals, say, 20? The points (x, y) for which the objective function z = 3x + 5y is
equal to 20 form the line 3x + 5y = 20. Since this line does not have common points

1. George B. Dantzig (1914–2005) has received many honors, including the National Medal of Science
presented by the president of the United States in 1976. The citation states that the National Medal was
awarded “for inventing linear programming and discovering methods that led to wide-scale scientific
and technical applications to important problems in logistics, scheduling, and network optimization,
and to the use of computers in making efficient use of the mathematical theory.”
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y

x

(3,1)

(0,2)

(0,0) (4,0)

x + y = 4

x + 3y = 6

FIGURE 10.1 Feasible region of problem (10.2).

with the feasible region—see Figure 10.2—the answer to the posed question is no.
On the other hand, there are infinitely many feasible points for which the objective
function is equal to, say, 10: they are the intersection points of the line 3x + 5y = 10
with the feasible region. Note that the lines 3x + 5y = 20 and 3x + 5y = 10 have
the same slope, as would any line defined by equation 3x + 5y = z where z is
some constant. Such lines are called level lines of the objective function. Thus,
our problem can be restated as finding the largest value of the parameter z for
which the level line 3x + 5y = z has a common point with the feasible region.

We can find this line either by shifting, say, the line 3x + 5y = 20 south-west
(without changing its slope!) toward the feasible region until it hits the region for
the first time or by shifting, say, the line 3x + 5y = 10 north-east until it hits the
feasible region for the last time. Either way, it will happen at the point (3, 1) with
the corresponding z value 3 . 3 + 5 . 1 = 14. This means that the optimal solution
to the linear programming problem in question is x = 3, y = 1, with the maximal
value of the objective function equal to 14.

Note that if we had to maximize z = 3x + 3y as the objective function in
problem (10.2), the level line 3x + 3y = z for the largest value of z would coincide
with the boundary line segment that has the same slope as the level lines (draw
this line in Figure 10.2). Consequently, all the points of the line segment between
vertices (3, 1) and (4, 0), including the vertices themselves, would be optimal
solutions, yielding, of course, the same maximal value of the objective function.
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3x + 5y = 20

3x + 5y = 14
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FIGURE 10.2 Solving a two-dimensional linear programming problem geometrically.

Does every linear programming problem have an optimal solution that can
be found at a vertex of its feasible region? Without appropriate qualifications,
the answer to this question is no. To begin with, the feasible region of a linear
programming problem can be empty. For example, if the constraints include two
contradictory requirements, such as x + y ≤ 1and x + y ≥ 2, there can be no points
in the problem’s feasible region. Linear programming problems with the empty
feasible region are called infeasible. Obviously, infeasible problems do not have
optimal solutions.

Another complication may arise if the problem’s feasible region is unbounded,
as the following example demonstrates.

EXAMPLE 2 If we reverse the inequalities in problem (10.2) to x + y ≥ 4 and
x + 3y ≥ 6, the feasible region of the new problem will become unbounded (see
Figure 10.3). If the feasible region of a linear programming problem is unbounded,
its objective function may or may not attain a finite optimal value on it. For
example, the problem of maximizing z = 3x + 5y subject to the constraints x + y ≥
4, x + 3y ≥ 6, x ≥ 0, y ≥ 0 has no optimal solution, because there are points in
the feasible region making 3x + 5y as large as we wish. Such problems are called
unbounded . On the other hand, the problem of minimizing z = 3x + 5y subject to
the same constraints has an optimal solution (which?).
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x

(3,1)

(0,4)

(0,0) (6,0)
3x + 5y = 24

3x + 5y = 20
3x + 5y = 14

FIGURE 10.3 Unbounded feasible region of a linear programming problem with
constraints x + y ≥ 4, x + 3y ≥ 6, x ≥ 0, y ≥ 0, and three level lines of
the function 3x + 5y.

Fortunately, the most important features of the examples we considered above
hold for problems with more than two variables. In particular, a feasible region of
a typical linear programming problem is in many ways similar to convex polygons
in the two-dimensional Cartesian plane. Specifically, it always has a finite number
of vertices, which mathematicians prefer to call extreme points (see Section 3.3).
Furthermore, an optimal solution to a linear programming problem can be found
at one of the extreme points of its feasible region. We reiterate these properties
in the following theorem.

THEOREM (Extreme Point Theorem) Any linear programming problem with
a nonempty bounded feasible region has an optimal solution; moreover, an op-
timal solution can always be found at an extreme point of the problem’s feasible
region.2

This theorem implies that to solve a linear programming problem, at least
in the case of a bounded feasible region, we can ignore all but a finite number of

2. Except for some degenerate instances (such as maximizing z = x + y subject to x + y = 1), if a linear
programming problem with an unbounded feasible region has an optimal solution, it can also be found
at an extreme point of the feasible region.
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points in its feasible region. In principle, we can solve such a problem by computing
the value of the objective function at each extreme point and selecting the one with
the best value. There are two major obstacles to implementing this plan, however.
The first lies in the need for a mechanism for generating the extreme points of the
feasible region. As we are going to see below, a rather straightforward algebraic
procedure for this task has been discovered. The second obstacle lies in the number
of extreme points a typical feasible region has. Here, the news is bad: the number
of extreme points is known to grow exponentially with the size of the problem.
This makes the exhaustive inspection of extreme points unrealistic for most linear
programming problems of nontrivial sizes.

Fortunately, it turns out that there exists an algorithm that typically inspects
only a small fraction of the extreme points of the feasible region before reaching an
optimal one. This famous algorithm is called the simplex method . The idea of this
algorithm can be described in geometric terms as follows. Start by identifying an
extreme point of the feasible region. Then check whether one can get an improved
value of the objective function by going to an adjacent extreme point. If it is not the
case, the current point is optimal—stop; if it is the case, proceed to an adjacent
extreme point with an improved value of the objective function. After a finite
number of steps, the algorithm will either reach an extreme point where an optimal
solution occurs or determine that no optimal solution exists.

An Outline of the Simplex Method

Our task now is to “translate” the geometric description of the simplex method
into the more algorithmically precise language of algebra. To begin with, before
we can apply the simplex method to a linear programming problem, it has to be
represented in a special form called the standard form. The standard form has the
following requirements:

It must be a maximization problem.
All the constraints (except the nonnegativity constraints) must be in the form
of linear equations with nonnegative right-hand sides.
All the variables must be required to be nonnegative.

Thus, the general linear programming problem in standard form with m con-
straints and n unknowns (n ≥ m) is

maximize c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn = bi, where bi ≥ 0 for i = 1, 2, . . . , m

x1 ≥ 0, . . . , xn ≥ 0.

(10.3)

It can also be written in compact matrix notations:

maximize cx

subject to Ax = b

x ≥ 0,
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where

c = [c1 c2 . . . cn], x =

⎡
⎢⎢⎣

x1
x2...
xn

⎤
⎥⎥⎦ , A =

⎡
⎣ a11 a12 . . . a1n...

...
...

am1 am2 . . . amn

⎤
⎦ , b =

⎡
⎢⎢⎣

b1
b2...
bm

⎤
⎥⎥⎦ .

Any linear programming problem can be transformed into an equivalent
problem in standard form. If an objective function needs to be minimized, it can
be replaced by the equivalent problem of maximizing the same objective function
with all its coefficients cj replaced by −cj , j = 1, 2, . . . , n (see Section 6.6 for
a more general discussion of such transformations). If a constraint is given as an
inequality, it can be replaced by an equivalent equation by adding a slack variable
representing the difference between the two sides of the original inequality. For
example, the two inequalities of problem (10.2) can be transformed, respectively,
into the following equations:

x + y + u = 4 where u ≥ 0 and x + 3y + v = 6 where v ≥ 0.

Finally, in most linear programming problems, the variables are required to be
nonnegative to begin with because they represent some physical quantities. If this
is not the case in an initial statement of a problem, an unconstrained variable
xj can be replaced by the difference between two new nonnegative variables:
xj = x

′
j
− x

′′
j
, x

′
j
≥ 0, x

′′
j
≥ 0.

Thus, problem (10.2) in standard form is the following linear programming
problem in four variables:

maximize 3x + 5y + 0u + 0v

subject to x + y + u = 4

x + 3y + + v = 6

x, y, u, v ≥ 0.

(10.4)

It is easy to see that if we find an optimal solution (x∗, y∗, u∗, v∗) to problem (10.4),
we can obtain an optimal solution to problem (10.2) by simply ignoring its last two
coordinates.

The principal advantage of the standard form lies in the simple mechanism
it provides for identifying extreme points of the feasible region. To do this for
problem (10.4), for example, we need to set two of the four variables in the con-
straint equations to zero to get a system of two linear equations in two unknowns
and solve this system. For the general case of a problem with m equations in n

unknowns (n ≥ m), n − m variables need to be set to zero to get a system of m

equations in m unknowns. If the system obtained has a unique solution—as any
nondegenerate system of linear equations with the number of equations equal to
the number of unknowns does—we have a basic solution; its coordinates set to
zero before solving the system are called nonbasic, and its coordinates obtained by
solving the system are called basic. (This terminology comes from linear algebra.
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Specifically, we can rewrite the system of constraint equations of (10.4) as

x

[
1
1

]
+ y

[
1
3

]
+ u

[
1
0

]
+ v

[
0
1

]
=
[

4
6

]
.

A basis in the two-dimensional vector space is composed of any two vectors that
are not proportional to each other; once a basis is chosen, any vector can be
uniquely expressed as a sum of multiples of the basis vectors. Basic and nonba-
sic variables indicate which of the given vectors are, respectively, included and
excluded in a particular basis choice.)

If all the coordinates of a basic solution are nonnegative, the basic solution is
called a basic feasible solution. For example, if we set to zero variables x and y

and solve the resulting system for u and v, we obtain the basic feasible solution
(0, 0, 4, 6); if we set to zero variables x and u and solve the resulting system for y

and v, we obtain the basic solution (0, 4, 0, −6), which is not feasible. The impor-
tance of basic feasible solutions lies in the one-to-one correspondence between
them and the extreme points of the feasible region. For example, (0, 0, 4, 6) is an
extreme point of the feasible region of problem (10.4) (with the point (0, 0) in Fig-
ure 10.1 being its projection on the x, y plane). Incidentally, (0, 0, 4, 6) is a natural
starting point for the simplex method’s application to this problem.

As mentioned above, the simplex method progresses through a series of
adjacent extreme points (basic feasible solutions) with increasing values of the
objective function. Each such point can be represented by a simplex tableau, a
table storing the information about the basic feasible solution corresponding to the
extreme point. For example, the simplex tableau for (0, 0, 4, 6) of problem (10.4)
is presented below:

1 1 1 0

x y u v

(10.5)

4

1

u

v 3 0 1 6

–3 –5 0 0 0

In general, a simplex tableau for a linear programming problem in standard form
with n unknowns and m linear equality constraints (n ≥ m) has m + 1 rows and
n + 1 columns. Each of the first m rows of the table contains the coefficients of
a corresponding constraint equation, with the last column’s entry containing the
equation’s right-hand side. The columns, except the last one, are labeled by the
names of the variables. The rows are labeled by the basic variables of the basic
feasible solution the tableau represents; the values of the basic variables of this
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solution are in the last column. Also note that the columns labeled by the basic
variables form the m × m identity matrix.

The last row of a simplex tableau is called the objective row. It is initialized
by the coefficients of the objective function with their signs reversed (in the first
n columns) and the value of the objective function at the initial point (in the last
column). On subsequent iterations, the objective row is transformed the same
way as all the other rows. The objective row is used by the simplex method to
check whether the current tableau represents an optimal solution: it does if all
the entries in the objective row—except, possibly, the one in the last column—are
nonnegative. If this is not the case, any of the negative entries indicates a nonbasic
variable that can become basic in the next tableau.

For example, according to this criterion, the basic feasible solution (0, 0, 4, 6)

represented by tableau (10.5) is not optimal. The negative value in the x-column
signals the fact that we can increase the value of the objective function z = 3x +
5y + 0u + 0v by increasing the value of the x-coordinate in the current basic
feasible solution (0, 0, 4, 6). Indeed, since the coefficient for x in the objective
function is positive, the larger the x value, the larger the value of this function. Of
course, we will need to “compensate” an increase in x by adjusting the values of
the basic variables u and v so that the new point is still feasible. For this to be the
case, both conditions

x + u = 4 where u ≥ 0
x + v = 6 where v ≥ 0

must be satisfied, which means that

x ≤ min{4, 6} = 4.

Note that if we increase the value of x from 0 to 4, the largest amount possible,
we will find ourselves at the point (4, 0, 0, 2), an adjacent to (0, 0, 4, 6) extreme
point of the feasible region, with z = 12.

Similarly, the negative value in the y-column of the objective row signals the
fact that we can also increase the value of the objective function by increasing
the value of the y-coordinate in the initial basic feasible solution (0, 0, 4, 6). This
requires

y + u = 4 where u ≥ 0

3y + v = 6 where v ≥ 0,

which means that

y ≤ min{4
1
,

6
3
} = 2.

If we increase the value of y from 0 to 2, the largest amount possible, we will find
ourselves at the point (0, 2, 2, 0), another adjacent to (0, 0, 4, 6) extreme point,
with z = 10.

If there are several negative entries in the objective row, a commonly used
rule is to select the most negative one, i.e., the negative number with the largest
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absolute value. This rule is motivated by the observation that such a choice yields
the largest increase in the objective function’s value per unit of change in a vari-
able’s value. (In our example, an increase in the x-value from 0 to 1 at (0, 0, 4, 6)

changes the value of z = 3x + 5y + 0u + 0v from 0 to 3, while an increase in the
y-value from 0 to 1 at (0, 0, 4, 6) changes z from 0 to 5.) Note, however, that the
feasibility constraints impose different limits on how much each of the variables
may increase. In our example, in particular, the choice of the y-variable over the
x-variable leads to a smaller increase in the value of the objective function. Still,
we will employ this commonly used rule and select variable y as we continue with
our example. A new basic variable is called the entering variable, while its column
is referred to as the pivot column; we mark the pivot column by ↑ .

Now we will explain how to choose a departing variable, i.e., a basic variable
to become nonbasic in the next tableau. (The total number of basic variables in any
basic solution must be equal to m, the number of the equality constraints.) As we
saw above, to get to an adjacent extreme point with a larger value of the objective
function, we need to increase the entering variable by the largest amount possible
to make one of the old basic variables zero while preserving the nonnegativity
of all the others. We can translate this observation into the following rule for
choosing a departing variable in a simplex tableau: for each positive entry in the
pivot column, compute the θ -ratio by dividing the row’s last entry by the entry in
the pivot column. For the example of tableau (10.5), these θ -ratios are

θu = 4
1

= 4, θv = 6
3

= 2.

The row with the smallest θ -ratio determines the departing variable, i.e., the
variable to become nonbasic. Ties may be broken arbitrarily. For our example, it is
variable v. We mark the row of the departing variable, called the pivot row, by ←−
and denote it ←−−−row. Note that if there are no positive entries in the pivot column,
no θ-ratio can be computed, which indicates that the problem is unbounded and
the algorithm stops.

Finally, the following steps need to be taken to transform a current tableau
into the next one. (This transformation, called pivoting, is similar to the princi-
pal step of the Gauss-Jordan elimination algorithm for solving systems of linear
equations—see Problem 8 in Exercises 6.2.) First, divide all the entries of the pivot
row by the pivot, its entry in the pivot column, to obtain ←−−−rownew. For tableau (10.5),
we obtain

←−−−rownew:
1
3

1 0
1
3

2.

Then, replace each of the other rows, including the objective row, by the difference

row − c . ←−−−rownew,

where c is the row’s entry in the pivot column. For tableau (10.5), this yields
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row 1 − 1 . ←−−−rownew:
2
3

0 1 − 1
3

2,

row 3 − (−5) . ←−−−rownew: − 4
3

0 0
5
3

10.

Thus, the simplex method transforms tableau (10.5) into the following tableau:

2
3 0 1

x y u v

(10.6)

2u

y 1 0 2

–

0 0 10

1
3

1
3

1
3

– 4
3

5
3

Tableau (10.6) represents the basic feasible solution (0, 2, 2, 0) with an increased
value of the objective function, which is equal to 10. It is not optimal, however
(why?).

The next iteration—do it yourself as a good exercise!—yields tableau (10.7):

1 0

x y u v

(10.7)

3

0

x

y 1 1

0 0 2 1 14

–

1
2

1
2

– 1
2

3
2

This tableau represents the basic feasible solution (3, 1, 0, 0). It is optimal because
all the entries in the objective row of tableau (10.7) are nonnegative. The maximal
value of the objective function is equal to 14, the last entry in the objective row.

Let us summarize the steps of the simplex method.

Summary of the simplex method

Step 0 Initialization Present a given linear programming problem in stan-
dard form and set up an initial tableau with nonnegative entries in the
rightmost column and m other columns composing the m × m identity
matrix. (Entries in the objective row are to be disregarded in verifying
these requirements.) These m columns define the basic variables of the
initial basic feasible solution, used as the labels of the tableau’s rows.

Step 1 Optimality test If all the entries in the objective row (except, possibly,
the one in the rightmost column, which represents the value of the
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objective function) are nonnegative—stop: the tableau represents an
optimal solution whose basic variables’ values are in the rightmost
column and the remaining, nonbasic variables’ values are zeros.

Step 2 Finding the entering variable Select a negative entry from among the
first n elements of the objective row. (A commonly used rule is to select
the negative entry with the largest absolute value, with ties broken
arbitrarily.) Mark its column to indicate the entering variable and the
pivot column.

Step 3 Finding the departing variable For each positive entry in the pivot
column, calculate the θ -ratio by dividing that row’s entry in the right-
most column by its entry in the pivot column. (If all the entries in the
pivot column are negative or zero, the problem is unbounded—stop.)
Find the row with the smallest θ-ratio (ties may be broken arbitrarily),
and mark this row to indicate the departing variable and the pivot row.

Step 4 Forming the next tableau Divide all the entries in the pivot row by
its entry in the pivot column. Subtract from each of the other rows,
including the objective row, the new pivot row multiplied by the entry
in the pivot column of the row in question. (This will make all the
entries in the pivot column 0’s except for 1 in the pivot row.) Replace
the label of the pivot row by the variable’s name of the pivot column
and go back to Step 1.

Further Notes on the Simplex Method

Formal proofs of validity of the simplex method steps can be found in books
devoted to a detailed discussion of linear programming (e.g., [Dan63]). A few
important remarks about the method still need to be made, however. Generally
speaking, an iteration of the simplex method leads to an extreme point of the prob-
lem’s feasible region with a greater value of the objective function. In degenerate
cases, which arise when one or more basic variables are equal to zero, the simplex
method can only guarantee that the value of the objective function at the new
extreme point is greater than or equal to its value at the previous point. In turn,
this opens the door to the possibility not only that the objective function’s values
“stall” for several iterations in a row but that the algorithm might cycle back to a
previously considered point and hence never terminate. The latter phenomenon
is called cycling. Although it rarely if ever happens in practice, specific examples
of problems where cycling does occur have been constructed. A simple modifica-
tion of Steps 2 and 3 of the simplex method, called Bland’s rule, eliminates even
the theoretical possibility of cycling. Assuming that the variables are denoted by
a subscripted letter (e.g., x1, x2, . . . , xn), this rule can be stated as follows:

Step 2 modified Among the columns with a negative entry in the objective
row, select the column with the smallest subscript.

Step 3 modified Resolve a tie among the smallest θ-ratios by selecting the
row labeled by the basic variable with the smallest subscript.
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Another caveat deals with the assumptions made in Step 0. They are automat-
ically satisfied if a problem is given in the form where all the constraints imposed
on nonnegative variables are inequalities ai1x1 + . . . + ainxn ≤ bi with bi ≥ 0 for
i = 1, 2, . . . , m. Indeed, by adding a nonnegative slack variable xn+i into the ith
constraint, we obtain the equality ai1x1 + . . . + ainxn + xn+i = bi, and all the re-
quirements imposed on an initial tableau of the simplex method are satisfied for
the obvious basic feasible solution x1 = . . . = xn = 0, xn+1 = . . . = xn+m = 1. But
if a problem is not given in such a form, finding an initial basic feasible solution
may present a nontrivial obstacle. Moreover, for problems with an empty feasible
region, no initial basic feasible solution exists, and we need an algorithmic way to
identify such problems. One of the ways to address these issues is to use an exten-
sion to the classic simplex method called the two-phase simplex method (see, e.g.,
[Kol95]). In a nutshell, this method adds a set of artificial variables to the equality
constraints of a given problem so that the new problem has an obvious basic fea-
sible solution. It then solves the linear programming problem of minimizing the
sum of the artificial variables by the simplex method. The optimal solution to this
problem either yields an initial tableau for the original problem or indicates that
the feasible region of the original problem is empty.

How efficient is the simplex method? Since the algorithm progresses through
a sequence of adjacent points of a feasible region, one should probably expect bad
news because the number of extreme points is known to grow exponentially with
the problem size. Indeed, the worst-case efficiency of the simplex method has been
shown to be exponential as well. Fortunately, more than half a century of practical
experience with the algorithm has shown that the number of iterations in a typical
application ranges between m and 3m, with the number of operations per iteration
proportional to mn, where m and n are the numbers of equality constraints and
variables, respectively.

Since its discovery in 1947, the simplex method has been a subject of intensive
study by many researchers. Some of them have worked on improvements to the
original algorithm and details of its efficient implementation. As a result of these
efforts, programs implementing the simplex method have been polished to the
point that very large problems with hundreds of thousands of constraints and
variables can be solved in a routine manner. In fact, such programs have evolved
into sophisticated software packages. These packages enable the user to enter
a problem’s constraints and obtain a solution in a user-friendly form. They also
provide tools for investigating important properties of the solution, such as its
sensitivity to changes in the input data. Such investigations are very important for
many applications, including those in economics. At the other end of the spectrum,
linear programming problems of a moderate size can nowadays be solved on a
desktop using a standard spreadsheet facility or by taking advantage of specialized
software available on the Internet.

Researchers have also tried to find algorithms for solving linear programming
problems with polynomial-time efficiency in the worst case. An important mile-
stone in the history of such algorithms was the proof by L. G. Khachian [Kha79]
showing that the ellipsoid method can solve any linear programming problem in
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polynomial time. Although the ellipsoid method was much slower than the simplex
method in practice, its better worst-case efficiency encouraged a search for alterna-
tives to the simplex method. In 1984, Narendra Karmarkar published an algorithm
that not only had a polynomial worst-case efficiency but also was competitive with
the simplex method in empirical tests as well. Although we are not going to discuss
Karmarkar’s algorithm [Kar84] here, it is worth pointing out that it is also based
on the iterative-improvement idea. However, Karmarkar’s algorithm generates a
sequence of feasible solutions that lie within the feasible region rather than going
through a sequence of adjacent extreme points as the simplex method does. Such
algorithms are called interior-point methods (see, e.g., [Arb93]).

Exercises 10.1

1. Consider the following version of the post office location problem (Problem
3 in Exercises 3.3): Given n integers x1, x2, . . . , xn representing coordinates
of n villages located along a straight road, find a location for a post office that
minimizes the average distance between the villages. The post office may be,
but is not required to be, located at one of the villages. Devise an iterative-
improvement algorithm for this problem. Is this an efficient way to solve this
problem?

2. Solve the following linear programming problems geometrically.
a.

maximize 3x + y

subject to −x + y ≤ 1

2x + y ≤ 4

x ≥ 0, y ≥ 0
b.

maximize x + 2y

subject to 4x ≥ y

y ≤ 3 + x

x ≥ 0, y ≥ 0

3. Consider the linear programming problem

minimize c1x + c2y

subject to x + y ≥ 4

x + 3y ≥ 6

x ≥ 0, y ≥ 0

where c1 and c2 are some real numbers not both equal to zero.
a. Give an example of the coefficient values c1 and c2 for which the problem

has a unique optimal solution.
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b. Give an example of the coefficient values c1 and c2 for which the problem
has infinitely many optimal solutions.

c. Give an example of the coefficient values c1 and c2 for which the problem
does not have an optimal solution.

4. Would the solution to problem (10.2) be different if its inequality constraints
were strict, i.e., x + y < 4 and x + 3y < 6, respectively?

5. Trace the simplex method on
a. the problem of Exercise 2a.

b. the problem of Exercise 2b.

6. Trace the simplex method on the problem of Example 1 in Section 6.6
a. by hand.

b. by using one of the implementations available on the Internet.

7. Determine how many iterations the simplex method needs to solve the
problem

maximize
n∑

j=1

xj

subject to 0 ≤ xj ≤ bj, where bj > 0 for j = 1, 2, . . . , n.

8. Can we apply the simplex method to solve the knapsack problem (see Exam-
ple 2 in Section 6.6)? If you answer yes, indicate whether it is a good algorithm
for the problem in question; if you answer no, explain why not.

9. Prove that no linear programming problem can have exactly k ≥ 1 optimal
solutions unless k = 1.

10. If a linear programming problem

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . , m

x1, x2, . . . , xn ≥ 0

is considered as primal, then its dual is defined as the linear programming
problem

minimize
m∑

i=1

biyi

subject to
m∑

i=1

aijyi ≥ cj for j = 1, 2, . . . , n

y1, y2, . . . , ym ≥ 0.
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a. Express the primal and dual problems in matrix notations.

b. Find the dual of the linear programming problem

maximize x1 + 4x2 − x3

subject to x1 + x2 + x3 ≤ 6

x1 − x2 − 2x3 ≤ 2

x1, x2, x3 ≥ 0.

c. Solve the primal and dual problems and compare the optimal values of
their objective functions.

10.2 The Maximum-Flow Problem

In this section, we consider the important problem of maximizing the flow of a ma-
terial through a transportation network (pipeline system, communication system,
electrical distribution system, and so on). We will assume that the transportation
network in question can be represented by a connected weighted digraph with n

vertices numbered from 1 to n and a set of edges E, with the following properties:

It contains exactly one vertex with no entering edges; this vertex is called the
source and assumed to be numbered 1.
It contains exactly one vertex with no leaving edges; this vertex is called the
sink and assumed to be numbered n.
The weight uij of each directed edge (i, j) is a positive integer, called the
edge capacity. (This number represents the upper bound on the amount of
the material that can be sent from i to j through a link represented by this
edge.)

A digraph satisfying these properties is called a flow network or simply a
network.3 A small instance of a network is given in Figure 10.4.

It is assumed that the source and the sink are the only source and destination
of the material, respectively; all the other vertices can serve only as points where
a flow can be redirected without consuming or adding any amount of the material.
In other words, the total amount of the material entering an intermediate vertex
must be equal to the total amount of the material leaving the vertex. This con-
dition is called the flow-conservation requirement. If we denote the amount sent
through edge (i, j) by xij , then for any intermediate vertex i, the flow-conservation
requirement can be expressed by the following equality constraint:∑

j : (j,i)∈E

xji =
∑

j : (i,j)∈E

xij for i = 2, 3, . . . , n − 1, (10.8)

3. In a slightly more general model, one can consider a network with several sources and sinks and allow
capacities uij to be infinitely large.
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FIGURE 10.4 Example of a network graph. The vertex numbers are vertex “names”;
the edge numbers are edge capacities.

where the sums in the left- and right-hand sides express the total inflow and outflow
entering and leaving vertex i, respectively.

Since no amount of the material can change by going through intermediate
vertices of the network, it stands to reason that the total amount of the material
leaving the source must end up at the sink. (This observation can also be derived
formally from equalities (10.8), a task you will be asked to do in the exercises.)
Thus, we have the following equality:∑

j : (1,j)∈E

x1j =
∑

j : (j,n)∈E

xjn. (10.9)

This quantity, the total outflow from the source—or, equivalently, the total inflow
into the sink—is called the value of the flow. We denote it by v. It is this quantity
that we will want to maximize over all possible flows in a network.

Thus, a (feasible) flow is an assignment of real numbers xij to edges (i, j) of
a given network that satisfy flow-conservation constraints (10.8) and the capacity
constraints

0 ≤ xij ≤ uij for every edge (i, j) ∈ E. (10.10)

The maximum-flow problem can be stated formally as the following optimization
problem:

maximize v =
∑

j : (1,j)∈E

x1j

subject to
∑

j : (j,i)∈E

xji −
∑

j : (i,j)∈E

xij = 0 for i = 2, 3, . . . , n − 1

0 ≤ xij ≤ uij for every edge (i, j) ∈ E.

(10.11)

We can solve linear programming problem (10.11) by the simplex method or
by another algorithm for general linear programming problems (see Section 10.1).
However, the special structure of problem (10.11) can be exploited to design faster
algorithms. In particular, it is quite natural to employ the iterative-improvement
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idea as follows. We can always start with the zero flow (i.e., set xij = 0 for every
edge (i, j) in the network). Then, on each iteration, we can try to find a path
from source to sink along which some additional flow can be sent. Such a path is
called flow augmenting. If a flow-augmenting path is found, we adjust the flow
along the edges of this path to get a flow of an increased value and try to find
an augmenting path for the new flow. If no flow-augmenting path can be found,
we conclude that the current flow is optimal. This general template for solving
the maximum-flow problem is called the augmenting-path method , also known
as the Ford-Fulkerson method after L. R. Ford, Jr., and D. R. Fulkerson, who
discovered it (see [For57]).

An actual implementation of the augmenting path idea is, however, not quite
straightforward. To see this, let us consider the network in Figure 10.4. We start
with the zero flow shown in Figure 10.5a. (In that figure, the zero amounts sent
through each edge are separated from the edge capacities by the slashes; we will
use this notation in the other examples as well.) It is natural to search for a flow-
augmenting path from source to sink by following directed edges (i, j) for which
the current flow xij is less than the edge capacity uij . Among several possibilities,
let us assume that we identify the augmenting path 1→2→3→6 first. We can
increase the flow along this path by a maximum of 2 units, which is the smallest
unused capacity of its edges. The new flow is shown in Figure 10.5b. This is as far
as our simpleminded idea about flow-augmenting paths will be able to take us.
Unfortunately, the flow shown in Figure 10.5b is not optimal: its value can still
be increased along the path 1→4→3←2→5→6 by increasing the flow by 1 on
edges (1, 4), (4, 3), (2, 5), and (5, 6) and decreasing it by 1 on edge (2, 3). The flow
obtained as the result of this augmentation is shown in Figure 10.5c. It is indeed
maximal. (Can you tell why?)

Thus, to find a flow-augmenting path for a flow x, we need to consider paths
from source to sink in the underlying undirected graph in which any two consec-
utive vertices i, j are either

i. connected by a directed edge from i to j with some positive unused capacity
rij = uij − xij (so that we can increase the flow through that edge by up to rij
units), or

ii. connected by a directed edge from j to i with some positive flow xji (so that
we can decrease the flow through that edge by up to xji units).

Edges of the first kind are called forward edges because their tail is listed before
their head in the vertex list 1 → . . . i → j . . . → n defining the path; edges of the
second kind are called backward edges because their tail is listed after their head in
the path list 1 → . . . i ← j . . . → n. To illustrate, for the path 1→4→3←2→5→6
of the last example, (1, 4), (4, 3), (2, 5), and (5, 6) are the forward edges, and (3, 2)

is the backward edge.
For a given flow-augmenting path, let r be the minimum of all the unused

capacities rij of its forward edges and all the flows xji of its backward edges.
It is easy to see that if we increase the current flow by r on each forward edge
and decrease it by this amount on each backward edge, we will obtain a feasible



364 Iterative Improvement

1 2

4

0/2

0 /3 0 /1

3

5

0/5

(a)

0/3 0 /4

6
0/2

1 2

4

2/2

0 /3 0 /1

3

5

2/5

0 /3 0 /4

6
2/2

(b)

1 2

4

2/2

1 /3 1/1

3

5

1/5

1/3 1 /4

6
2/2

(c)

FIGURE 10.5 Illustration of the augmenting-path method. Flow-augmenting paths are
shown in bold. The flow amounts and edge capacities are indicated by
the numbers before and after the slash, respectively.

flow whose value is r units greater than the value of its predecessor. Indeed, let
i be an intermediate vertex on a flow-augmenting path. There are four possible
combinations of forward and backward edges incident to vertex i:

+r−→ i
+r−→,

+r−→ i
−r←−,

−r←− i
+r−→,

−r←− i
−r←− .
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For each of them, the flow-conservation requirement for vertex i will still hold
after the flow adjustments indicated above the edge arrows. Further, since r is the
minimum among all the positive unused capacities on the forward edges and all
the positive flows on the backward edges of the flow-augmenting path, the new
flow will satisfy the capacity constraints as well. Finally, adding r to the flow on
the first edge of the augmenting path will increase the value of the flow by r.

Under the assumption that all the edge capacities are integers, r will be a
positive integer too. Hence, the flow value increases at least by 1 on each iteration
of the augmenting-path method. Since the value of a maximum flow is bounded
above (e.g., by the sum of the capacities of the source edges), the augmenting-path
method has to stop after a finite number of iterations.4 Surprisingly, the final flow
always turns out to be maximal, irrespective of a sequence of augmenting paths.
This remarkable result stems from the proof of the Max-Flow Min-Cut Theorem
(see, e.g., [For62]), which we replicate later in this section.

The augmenting-path method—as described above in its general form—does
not indicate a specific way for generating flow-augmenting paths. A bad sequence
of such paths may, however, have a dramatic impact on the method’s efficiency.
Consider, for example, the network in Figure 10.6a, in which U stands for some
large positive integer. If we augment the zero flow along the path 1→2→3→4,
we shall obtain the flow of value 1 shown in Figure 10.6b. Augmenting that flow
along the path 1→3←2→4 will increase the flow value to 2 (Figure 10.6c). If we
continue selecting this pair of flow-augmenting paths, we will need a total of 2U

iterations to reach the maximum flow of value 2U (Figure 10.6d). Of course, we
can obtain the maximum flow in just two iterations by augmenting the initial zero
flow along the path 1→2→4 followed by augmenting the new flow along the path
1→3→4. The dramatic difference between 2U and 2 iterations makes the point.

Fortunately, there are several ways to generate flow-augmenting paths ef-
ficiently and avoid the degradation in performance illustrated by the previous
example. The simplest of them uses breadth-first search to generate augment-
ing paths with the least number of edges (see Section 3.5). This version of the
augmenting-path method, called shortest-augmenting-path or first-labeled-first-
scanned algorithm, was suggested by J. Edmonds and R. M. Karp [Edm72]. The
labeling refers to marking a new (unlabeled) vertex with two labels. The first label
indicates the amount of additional flow that can be brought from the source to
the vertex being labeled. The second label is the name of the vertex from which
the vertex being labeled was reached. (It can be left undefined for the source.) It
is also convenient to add the + or − sign to the second label to indicate whether
the vertex was reached via a forward or backward edge, respectively. The source
can be always labeled with ∞, −. For the other vertices, the labels are computed
as follows.

4. If capacity upper bounds are irrational numbers, the augmenting-path method may not terminate
(see, e.g., [Chv83, pp. 387–388], for a cleverly devised example demonstrating such a situation). This
limitation is only of theoretical interest because we cannot store irrational numbers in a computer, and
rational numbers can be transformed into integers by changing the capacity measurement unit.
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FIGURE 10.6 Efficiency degradation of the augmenting-path method.

If unlabeled vertex j is connected to the front vertex i of the traversal queue
by a directed edge from i to j with positive unused capacity rij = uij − xij , then
vertex j is labeled with lj , i+, where lj = min{li, rij}.

If unlabeled vertex j is connected to the front vertex i of the traversal queue
by a directed edge from j to i with positive flow xji, then vertex j is labeled with
lj , i−, where lj = min{li, xji}.

If this labeling-enhanced traversal ends up labeling the sink, the current
flow can be augmented by the amount indicated by the sink’s first label. The
augmentation is performed along the augmenting path traced by following the
vertex second labels from sink to source: the current flow quantities are increased
on the forward edges and decreased on the backward edges of this path. If, on the
other hand, the sink remains unlabeled after the traversal queue becomes empty,
the algorithm returns the current flow as maximum and stops.

ALGORITHM ShortestAugmentingPath(G)

//Implements the shortest-augmenting-path algorithm
//Input: A network with single source 1, single sink n, and
// positive integer capacities uij on its edges (i, j)

//Output: A maximum flow x

assign xij = 0 to every edge (i, j) in the network
label the source with ∞, − and add the source to the empty queue Q
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while not Empty(Q) do
i ← Front(Q); Dequeue(Q)

for every edge from i to j do //forward edges
if j is unlabeled

rij ← uij − xij

if rij > 0
lj ← min{li, rij}; label j with lj , i+
Enqueue(Q, j)

for every edge from j to i do //backward edges
if j is unlabeled

if xji > 0
lj ← min{li, xji}; label j with lj , i−
Enqueue(Q, j)

if the sink has been labeled
//augment along the augmenting path found
j ← n //start at the sink and move backwards using second labels
while j �= 1 //the source hasn’t been reached

if the second label of vertex j is i+
xij ← xij + ln

else //the second label of vertex j is i−
xji ← xji − ln

j ← i; i ← the vertex indicated by i’s second label
erase all vertex labels except the ones of the source
reinitialize Q with the source

return x //the current flow is maximum

An application of this algorithm to the network in Figure 10.4 is illustrated in
Figure 10.7.

The optimality of a final flow obtained by the augmenting-path method stems
from a theorem that relates network flows to network cuts. A cut induced by
partitioning vertices of a network into some subset X containing the source and
X̄, the complement of X, containing the sink is the set of all the edges with a tail
in X and a head in X̄. We denote a cut C(X, X̄) or simply C. For example, for the
network in Figure 10.4:

if X = {1} and hence X̄ = {2, 3, 4, 5, 6}, C(X, X̄) = {(1, 2), (1, 4)};
if X = {1, 2, 3, 4, 5} and hence X̄ = {6}, C(X, X̄) = {(3, 6), (5, 6)};
if X = {1, 2, 4} and hence X̄ = {3, 5, 6}, C(X, X̄) = {(2, 3), (2, 5), (4, 3)}.
The name “cut” stems from the following property: if all the edges of a cut

were deleted from the network, there would be no directed path from source to
sink. Indeed, let C(X, X̄) be a cut. Consider a directed path from source to sink. If
vi is the first vertex of that path which belongs to X̄ (the set of such vertices is not
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FIGURE 10.7 Illustration of the shortest-augmenting-path algorithm. The diagrams on
the left show the current flow before the next iteration begins; the
diagrams on the right show the results of the vertex labeling on that
iteration, the augmenting path found (in bold), and the flow before its
augmentation. Vertices deleted from the queue are indicated by the ↑
symbol.
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empty, because it contains the sink), then vi is not the source and its immediate
predecessor vi−1 on that path belongs to X. Hence, the edge from vi−1 to vi must
be an element of the cut C(X, X̄). This proves the property in question.

The capacity of a cut C(X, X̄), denoted c(X, X̄), is defined as the sum of
capacities of the edges that compose the cut. For the three examples of cuts given
above, the capacities are equal to 5, 6, and 9, respectively. Since the number of
different cuts in a network is nonempty and finite (why?), there always exists
a minimum cut, i.e., a cut with the smallest capacity. (What is a minimum cut
in the network of Figure 10.4?) The following theorem establishes an important
relationship between the notions of maximum flow and minimum cut.

THEOREM (Max-Flow Min-Cut Theorem) The value of a maximum flow in a
network is equal to the capacity of its minimum cut.

PROOF First, let x be a feasible flow of value v and let C(X, X̄) be a cut of
capacity c in the same network. Consider the flow across this cut defined as the
difference between the sum of the flows on the edges from X to X̄ and the sum
of the flows on the edges from X̄ to X. It is intuitively clear and can be formally
derived from the equations expressing the flow-conservation requirement and the
definition of the flow value (Problem 6b in this section’s exercises) that the flow
across the cut C(X, X̄) is equal to v, the value of the flow:

v =
∑

i∈X, j∈X̄

xij −
∑

j∈X̄, i∈X

xji. (10.12)

Since the second sum is nonnegative and the flow xij on any edge (i, j) cannot
exceed the edge capacity uij , equality (10.12) implies that

v ≤
∑

i∈X, j∈X̄

xij ≤
∑

i∈X, j∈X̄

uij ,

i.e.,

v ≤ c. (10.13)

Thus, the value of any feasible flow in a network cannot exceed the capacity of
any cut in that network.

Let v∗ be the value of a final flow x∗ obtained by the augmenting-path method.
If we now find a cut whose capacity is equal to v∗, we will have to conclude, in view
of inequality (10.13), that (i) the value v∗ of the final flow is maximal among all
feasible flows, (ii) the cut’s capacity is minimal among all cuts in the network, and
(iii) the maximum-flow value is equal to the minimum-cut capacity.

To find such a cut, consider the set of vertices X∗ that can be reached from the
source by following an undirected path composed of forward edges with positive
unused capacities (with respect to the final flow x∗) and backward edges with
positive flows on them. This set contains the source but does not contain the
sink: if it did, we would have an augmenting path for the flow x∗, which would
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contradict the assumption that the flow x∗ is final. Consider the cut C(X∗, X∗). By
the definition of set X∗, each edge (i, j) from X∗ to X∗ has zero unused capacity,
i.e., x∗

ij
= uij , and each edge (j, i) from X∗ to X∗ has the zero flow on it (otherwise,

j would be in X∗). Applying equality (10.12) to the final flow x∗ and the set X∗
defined above, we obtain

v∗ =
∑

i∈X∗, j∈X∗
x∗

ij
−

∑
j∈X∗, i∈X∗

x∗
ji

=
∑

i∈X∗, j∈X∗
uij − 0 = c(X∗, X∗),

which proves the theorem.

The proof outlined above accomplishes more than proving the equality of the
maximum-flow value and the minimum-cut capacity. It also implies that when the
augmenting-path method terminates, it yields both a maximum flow and a mini-
mum cut. If labeling of the kind utilized in the shortest-augmenting-path algorithm
is used, a minimum cut is formed by the edges from the labeled to unlabeled ver-
tices on the last iteration of the method. Finally, the proof implies that all such
edges must be full (i.e., the flows must be equal to the edge capacities), and all
the edges from unlabeled vertices to labeled, if any, must be empty (i.e., have
zero flows on them). In particular, for the network in Figure 10.7, the algorithm
finds the cut {(1, 2), (4, 3)} of minimum capacity 3, both edges of which are full as
required.

Edmonds and Karp proved in their paper [Edm72] that the number of aug-
menting paths needed by the shortest-augmenting-path algorithm never exceeds
nm/2, where n and m are the number of vertices and edges, respectively. Since
the time required to find a shortest augmenting path by breadth-first search is
in O(n + m) = O(m) for networks represented by their adjacency lists, the time
efficiency of the shortest-augmenting-path algorithm is in O(nm2).

More efficient algorithms for the maximum-flow problem are known (see the
monograph [Ahu93], as well as appropriate chapters in such books as [Cor09] and
[Kle06]). Some of them implement the augmenting-path idea in a more efficient
manner. Others are based on the concept of preflows. A preflow is a flow that
satisfies the capacity constraints but not the flow-conservation requirement. Any
vertex is allowed to have more flow entering the vertex than leaving it. A preflow-
push algorithm moves the excess flow toward the sink until the flow-conservation
requirement is reestablished for all intermediate vertices of the network. Faster al-
gorithms of this kind have worst-case efficiency close to O(nm). Note that preflow-
push algorithms fall outside the iterative-improvement paradigm because they do
not generate a sequence of improving solutions that satisfy all the constraints of
the problem.

To conclude this section, it is worth pointing out that although the initial
interest in studying network flows was caused by transportation applications, this
model has also proved to be useful for many other areas. We discuss one of them
in the next section.
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Exercises 10.2

1. Since maximum-flow algorithms require processing edges in both directions,
it is convenient to modify the adjacency matrix representation of a network
as follows. If there is a directed edge from vertex i to vertex j of capacity
uij , then the element in the ith row and the j th column is set to uij , and the
element in the j th row and the ith column is set to −uij ; if there is no edge
between vertices i and j , both these elements are set to zero. Outline a simple
algorithm for identifying a source and a sink in a network presented by such
a matrix and indicate its time efficiency.

2. Apply the shortest-augmenting path algorithm to find a maximum flow and a
minimum cut in the following networks.
a.

1 2 5
5

7

2

8
3

6 4 4

4 6

b.
2

1 6

4
3

2

7

1

5
4 4

2
3 5

3. a. Does the maximum-flow problem always have a unique solution? Would
your answer be different for networks with different capacities on all their
edges?

b. Answer the same questions for the minimum-cut problem of finding a cut
of the smallest capacity in a given network.

4. a. Explain how the maximum-flow problem for a network with several
sources and sinks can be transformed into the same problem for a network
with a single source and a single sink.

b. Some networks have capacity constraints on the flow amounts that can
flow through their intermediate vertices. Explain how the maximum-flow
problem for such a network can be transformed to the maximum-flow
problem for a network with edge capacity constraints only.

5. Consider a network that is a rooted tree, with the root as its source, the leaves
as its sinks, and all the edges directed along the paths from the root to the
leaves. Design an efficient algorithm for finding a maximum flow in such a
network. What is the time efficiency of your algorithm?

6. a. Prove equality (10.9).
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b. Prove that for any flow in a network and any cut in it, the value of the
flow is equal to the flow across the cut (see equality (10.12)). Explain the
relationship between this property and equality (10.9).

7. a. Express the maximum-flow problem for the network in Figure 10.4 as a
linear programming problem.

b. Solve this linear programming problem by the simplex method.

8. As an alternative to the shortest-augmenting-path algorithm, Edmonds and
Karp [Edm72] suggested the maximum-capacity-augmenting-path algorithm,
in which a flow is augmented along the path that increases the flow by the
largest amount. Implement both these algorithms in the language of your
choice and perform an empirical investigation of their relative efficiency.

9. Write a report on a more advanced maximum-flow algorithm such as
(i) Dinitz’s algorithm, (ii) Karzanov’s algorithm, (iii) Malhotra-Kamar-
Maheshwari algorithm, or (iv) Goldberg-Tarjan algorithm.

10. Dining problem Several families go out to dinner together. To increase their
social interaction, they would like to sit at tables so that no two members of
the same family are at the same table. Show how to find a seating arrangement
that meets this objective (or prove that no such arrangement exists) by using
a maximum-flow problem. Assume that the dinner contingent has p families
and that the ith family has ai members. Also assume that q tables are available
and the j th table has a seating capacity of bj . [Ahu93]

10.3 Maximum Matching in Bipartite Graphs

In many situations we are faced with a problem of pairing elements of two sets.
The traditional example is boys and girls for a dance, but you can easily think
of more serious applications. It is convenient to represent elements of two given
sets by vertices of a graph, with edges between vertices that can be paired. A
matching in a graph is a subset of its edges with the property that no two edges
share a vertex. A maximum matching—more precisely, a maximum cardinality
matching—is a matching with the largest number of edges. (What is it for the graph
in Figure 10.8? Is it unique?) The maximum-matching problem is the problem of
finding a maximum matching in a given graph. For an arbitrary graph, this is a
rather difficult problem. It was solved in 1965 by Jack Edmonds [Edm65]. (See
[Gal86] for a good survey and more recent references.)

We limit our discussion in this section to the simpler case of bipartite graphs. In
a bipartite graph, all the vertices can be partitioned into two disjoint sets V and U ,
not necessarily of the same size, so that every edge connects a vertex in one of these
sets to a vertex in the other set. In other words, a graph is bipartite if its vertices
can be colored in two colors so that every edge has its vertices colored in different
colors; such graphs are also said to be 2-colorable. The graph in Figure 10.8 is
bipartite. It is not difficult to prove that a graph is bipartite if and only if it does
not have a cycle of an odd length. We will assume for the rest of this section that
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1 2 3 4

5

V

U 6 7 8

FIGURE 10.8 Example of a bipartite graph.

the vertex set of a given bipartite graph has been already partitioned into sets V

and U as required by the definition (see Problem 8 in Exercises 3.5).
Let us apply the iterative-improvement technique to the maximum-

cardinality-matching problem. Let M be a matching in a bipartite graph G =
〈V, U, E〉. How can we improve it, i.e., find a new matching with more edges?
Obviously, if every vertex in either V or U is matched (has a mate), i.e., serves as
an endpoint of an edge in M , this cannot be done and M is a maximum matching.
Therefore, to have a chance at improving the current matching, both V and U

must contain unmatched (also called free) vertices, i.e., vertices that are not inci-
dent to any edge in M . For example, for the matching Ma = {(4, 8), (5, 9)} in the
graph in Figure 10.9a, vertices 1, 2, 3, 6, 7, and 10 are free, and vertices 4, 5, 8,

and 9 are matched.
Another obvious observation is that we can immediately increase a current

matching by adding an edge between two free vertices. For example, adding (1, 6)

to the matching Ma = {(4, 8), (5, 9)} in the graph in Figure 10.9a yields a larger
matching Mb = {(1, 6), (4, 8), (5, 9)} (Figure 10.9b). Let us now try to find a
matching larger than Mb by matching vertex 2. The only way to do this would
be to include the edge (2, 6) in a new matching. This inclusion requires removal of
(1, 6), which can be compensated by inclusion of (1, 7) in the new matching. This
new matching Mc = {(1, 7), (2, 6), (4, 8), (5, 9)} is shown in Figure 10.9c.

In general, we increase the size of a current matching M by constructing a
simple path from a free vertex in V to a free vertex in U whose edges are alternately
in E − M and in M. That is, the first edge of the path does not belong to M, the
second one does, and so on, until the last edge that does not belong to M. Such a
path is called augmenting with respect to the matching M. For example, the path
2, 6, 1, 7 is an augmenting path with respect to the matching Mb in Figure 10.9b.
Since the length of an augmenting path is always odd, adding to the matching M

the path’s edges in the odd-numbered positions and deleting from it the path’s
edges in the even-numbered positions yields a matching with one more edge than
in M. Such a matching adjustment is called augmentation. Thus, in Figure 10.9,
the matching Mb was obtained by augmentation of the matching Ma along the
augmenting path 1, 6, and the matching Mc was obtained by augmentation of the
matching Mb along the augmenting path 2, 6, 1, 7. Moving further, 3, 8, 4, 9, 5, 10
is an augmenting path for the matching Mc (Figure 10.9c). After adding to Mc

the edges (3, 8), (4, 9), and (5, 10) and deleting (4, 8) and (5, 9), we obtain the
matching Md = {(1, 7), (2, 6), (3, 8), (4, 9), (5, 10)} shown in Figure 10.9d. The
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1 2 3 4

6

V

U 7 8 9

5

10

(a)

Augmenting path:  1, 6

1 2 3 4

6 7 8 9

5

10

(b)

Augmenting path:  2, 6, 1, 7

1 2 3 4

6 7 8 9

5

10

(c)

Augmenting path:  3, 8, 4, 9, 5, 10

1 2 3 4

6 7 8 9

5

10

(d)

Maximum matching

FIGURE 10.9 Augmenting paths and matching augmentations.
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matching Md is not only a maximum matching but also perfect, i.e., a matching
that matches all the vertices of the graph.

Before we discuss an algorithm for finding an augmenting path, let us settle
the issue of what nonexistence of such a path means. According to the theorem
discovered by the French mathematician Claude Berge, it means the current
matching is maximal.

THEOREM A matching M is a maximum matching if and only if there exists no
augmenting path with respect to M .

PROOF If an augmenting path with respect to a matching M exists, then the size
of the matching can be increased by augmentation. Let us prove the more difficult
part: if no augmenting path with respect to a matching M exists, then the matching
is a maximum matching. Assume that, on the contrary, this is not the case for a
certain matching M in a graph G. Let M∗ be a maximum matching in G; by our
assumption, the number of edges in M∗ is at least one more than the number
of edges in M, i.e., |M∗| > |M|. Consider the edges in the symmetric difference
M ⊕ M∗ = (M − M∗) ∪ (M∗ − M), the set of all the edges that are either in M or
in M∗ but not in both. Note that |M∗ − M| > |M − M∗| because |M∗| > |M| by
assumption. Let G′ be the subgraph of G made up of all the edges in M ⊕ M∗ and
their endpoints. By definition of a matching, any vertex in G′ ⊆ G can be incident
to no more than one edge in M and no more than one edge in M∗. Hence, each of
the vertices in G′ has degree 2 or less, and therefore every connected component
of G′ is either a path or an even-length cycle of alternating edges from M − M∗ and
M∗ − M . Since |M∗ − M| > |M − M∗| and the number of edges from M − M∗ and
M∗ − M is the same for any even-length cycle of alternating edges in G′, there must
exist at least one path of alternating edges that starts and ends with an edge from
M∗ − M. Hence, this is an augmenting path for the matching M , which contradicts
the assumption that no such path exists.

Our discussion of augmenting paths leads to the following general method
for constructing a maximum matching in a bipartite graph. Start with some initial
matching (e.g., the empty set). Find an augmenting path and augment the current
matching along this path. When no augmenting path can be found, terminate the
algorithm and return the last matching, which is maximum.

We now give a specific algorithm implementing this general template. We will
search for an augmenting path for a matching M by a BFS-like traversal of the
graph that starts simultaneously at all the free vertices in one of the sets V and U,

say, V. (It would be logical to select the smaller of the two vertex sets, but we will
ignore this observation in the pseudocode below.) Recall that an augmenting path,
if it exists, is an odd-length path that connects a free vertex in V with a free vertex
in U and which, unless it consists of a single edge, “zigs” from a vertex in V to
another vertex’ mate in U , then “zags” back to V along the uniquely defined edge
from M , and so on until a free vertex in U is reached. (Draw augmenting paths
for the matchings in Figure 10.9, for example.) Hence, any candidate to be such a
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path must have its edges alternate in the pattern just described. This motivates the
following rules for labeling vertices during the BFS-like traversal of the graph.

Case 1 (the queue’s front vertex w is in V ) If u is a free vertex adjacent to
w, it is used as the other endpoint of an augmenting path; so the labeling stops
and augmentation of the matching commences. The augmenting path in question
is obtained by moving backward along the vertex labels (see below) to alternately
add and delete its edges to and from the current matching. If u is not free and
connected to w by an edge not in M , label u with w unless it has been already
labeled.

Case 2 (the front vertex w is in U) In this case, w must be matched and we
label its mate in V with w.

Here is pseudocode of the algorithm in its entirety.

ALGORITHM MaximumBipartiteMatching(G)

//Finds a maximum matching in a bipartite graph by a BFS-like traversal
//Input: A bipartite graph G = 〈V, U, E〉
//Output: A maximum-cardinality matching M in the input graph
initialize set M of edges with some valid matching (e.g., the empty set)
initialize queue Q with all the free vertices in V (in any order)
while not Empty(Q) do

w ← Front(Q); Dequeue(Q)

if w ∈ V

for every vertex u adjacent to w do
if u is free

//augment
M ← M ∪ (w, u)

v ← w

while v is labeled do
u ← vertex indicated by v’s label; M ← M − (v, u)

v ← vertex indicated by u’s label; M ← M ∪ (v, u)

remove all vertex labels
reinitialize Q with all free vertices in V

break //exit the for loop
else //u is matched

if (w, u) �∈ M and u is unlabeled
label u with w

Enqueue(Q, u)

else //w ∈ U (and matched)
label the mate v of w with w

Enqueue(Q, v)

return M //current matching is maximum
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An application of this algorithm to the matching in Figure 10.9a is shown in
Figure 10.10. Note that the algorithm finds a maximum matching that differs from
the one in Figure 10.9d.

1 2 3 4

6

V

U 7 8 9

5

10

Queue:  1  2  3

1

1

2 3 4

7 8 9

5

106

Augment from 6
↑

Queue:  1  2  3

1 2 3 4

7 8 9

5

106

Queue:  2  3

1

6

2 1 3

8

2 3 4

8 9

5

106 7

Augment from 7
↑ ↑ ↑ ↑ ↑

Queue:  2  3  6  8  1  4

1 2 3 4

8 9

5

106 7

Queue: 3

1

3

6

3

8

4 4

2 3 4

8 9

5

106 7

Augment from 10
↑ ↑ ↑ ↑ ↑

Queue:  3  6  8  2  4  9

1 2 3 4

8 9

5

106 7

Queue:  empty ⇒ maximum matching

FIGURE 10.10 Application of the maximum-cardinality-matching algorithm. The left
column shows a current matching and initialized queue at the next
iteration’s start; the right column shows the vertex labeling generated
by the algorithm before augmentation is performed. Matching edges are
shown in bold. Vertex labels indicate the vertices from which the labeling
is done. The discovered endpoint of an augmenting path is shaded and
labeled for clarity. Vertices deleted from the queue are indicated by ↑.
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How efficient is the maximum-matching algorithm? Each iteration except
the last one matches two previously free vertices—one from each of the sets V

and U. Therefore, the total number of iterations cannot exceed �n/2� + 1, where
n = |V | + |U | is the number of vertices in the graph. The time spent on each
iteration is in O(n + m), where m = |E| is the number of edges in the graph. (This
assumes that the information about the status of each vertex—free or matched and
the vertex’ mate if the latter—can be retrieved in constant time, e.g., by storing it in
an array.) Hence, the time efficiency of the algorithm is in O(n(n + m)). Hopcroft
and Karp [Hop73] showed how the efficiency can be improved to O(

√
n(n + m))

by combining several iterations into a single stage to maximize the number of
edges added to the matching with one search.

We were concerned in this section with matching the largest possible number
of vertex pairs in a bipartite graph. Some applications may require taking into ac-
count the quality or cost of matching different pairs. For example, workers may
execute jobs with different efficiencies, or girls may have different preferences for
their potential dance partners. It is natural to model such situations by bipartite
graphs with weights assigned to their edges. This leads to the problem of maxi-
mizing the sum of the weights on edges connecting matched pairs of vertices. This
problem is called maximum-weight matching. We encountered it under a differ-
ent name—the assignment problem—in Section 3.4. There are several sophisti-
cated algorithms for this problem, which are much more efficient than exhaustive
search (see, e.g., [Pap82], [Gal86], [Ahu93]). We have to leave them outside of our
discussion, however, because of their complexity, especially for general graphs.

Exercises 10.3

1. For each matching shown below in bold, find an augmentation or explain why
no augmentation exists.

a. b.

1 2 3 4

5 6 7

1 2 3 4

5 6 7 8

2. Apply the maximum-matching algorithm to the following bipartite graph:

1 2 3

4 5 6
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3. a. What is the largest and what is the smallest possible cardinality of a match-
ing in a bipartite graph G = 〈V, U, E〉 with n vertices in each vertex set V

and U and at least n edges?

b. What is the largest and what is the smallest number of distinct solutions
the maximum-cardinality-matching problem can have for a bipartite graph
G = 〈V, U, E〉 with n vertices in each vertex set V and U and at least n

edges?

4. a. Hall’s Marriage Theorem asserts that a bipartite graph G = 〈V, U, E〉 has a
matching that matches all vertices of the set V if and only if for each subset
S ⊆ V, |R(S)| ≥ |S| where R(S) is the set of all vertices adjacent to a vertex
in S. Check this property for the following graph with (i) V = {1, 2, 3, 4}
and (ii) V = {5, 6, 7}.

1 2 3 4

5 6 7

b. You have to devise an algorithm that returns yes if there is a matching in
a bipartite graph G = 〈V, U, E〉 that matches all vertices in V and returns
no otherwise. Would you base your algorithm on checking the condition
of Hall’s Marriage Theorem?

5. Suppose there are five committees A, B, C, D, and E composed of six persons
a, b, c, d, e, and f as follows: committee A’s members are b and e; committee
B’s members are b, d, and e; committee C’s members are a, c, d, e, and f ;
committee D’s members are b, d, and e; committee E’s members are b and
e. Is there a system of distinct representatives, i.e., is it possible to select
a representative from each committee so that all the selected persons are
distinct?

6. Show how the maximum-cardinality-matching problem for a bipartite graph
can be reduced to the maximum-flow problem discussed in Section 10.2.

7. Consider the following greedy algorithm for finding a maximum matching
in a bipartite graph G = 〈V, U, E〉. Sort all the vertices in nondecreasing
order of their degrees. Scan this sorted list to add to the current matching
(initially empty) the edge from the list’s free vertex to an adjacent free vertex
of the lowest degree. If the list’s vertex is matched or if there are no adjacent
free vertices for it, the vertex is simply skipped. Does this algorithm always
produce a maximum matching in a bipartite graph?

8. Design a linear-time algorithm for finding a maximum matching in a tree.

9. Implement the maximum-matching algorithm of this section in the language
of your choice. Experiment with its performance on bipartite graphs with n

vertices in each of the vertex sets and randomly generated edges (in both
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dense and sparse modes) to compare the observed running time with the
algorithm’s theoretical efficiency.

10. Domino puzzle A domino is a 2 × 1 tile that can be oriented either hori-
zontally or vertically. A tiling of a given board composed of 1 × 1 squares is
covering it with dominoes exactly and without overlap. Is it possible to tile with
dominoes an 8 × 8 board without two unit squares at its diagonally opposite
corners?

10.4 The Stable Marriage Problem

In this section, we consider an interesting version of bipartite matching called the
stable marriage problem. Consider a set Y = {m1, m2, . . . , mn} of n men and a
set X = {w1, w2, . . . , wn} of n women. Each man has a preference list ordering
the women as potential marriage partners with no ties allowed. Similarly, each
woman has a preference list of the men, also with no ties. Examples of these two
sets of lists are given in Figures 10.11a and 10.11b. The same information can also
be presented by an n × n ranking matrix (see Figure 10.11c). The rows and columns
of the matrix represent the men and women of the two sets, respectively. A cell
in row m and column w contains two rankings: the first is the position (ranking)
of w in the m’s preference list; the second is the position (ranking) of m in the w’s
preference list. For example, the pair 3, 1 in Jim’s row and Ann’s column in the
matrix in Figure 10.11c indicates that Ann is Jim’s third choice while Jim is Ann’s
first. Which of these two ways to represent such information is better depends on
the task at hand. For example, it is easier to specify a match of the sets’ elements
by using the ranking matrix, whereas the preference lists might be a more efficient
data structure for implementing a matching algorithm.

A marriage matching M is a set of n (m, w) pairs whose members are selected
from disjoint n-element sets Y and X in a one-one fashion, i.e., each man m from
Y is paired with exactly one woman w from X and vice versa. (If we represent
Y and X as vertices of a complete bipartite graph with edges connecting possible
marriage partners, then a marriage matching is a perfect matching in such a graph.)

men’s preferences women’s preferences ranking matrix
1st 2nd 3rd 1st 2nd 3rd Ann Lea Sue

Bob: Lea Ann Sue Ann: Jim Tom Bob Bob 2,3 1,2 3,3
Jim: Lea Sue Ann Lea: Tom Bob Jim Jim 3,1 1,3 2,1
Tom: Sue Lea Ann Sue: Jim Tom Bob Tom 3,2 2,1 1,2

(a) (b) (c)

FIGURE 10.11 Data for an instance of the stable marriage problem. (a) Men’s preference
lists; (b) women’s preference lists. (c) Ranking matrix (with the boxed
cells composing an unstable matching).
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A pair (m, w), where m ∈ Y, w ∈ X, is said to be a blocking pair for a marriage
matching M if man m and woman w are not matched in M but they prefer each
other to their mates in M. For example, (Bob, Lea) is a blocking pair for the
marriage matching M = {(Bob, Ann), (Jim, Lea), (Tom, Sue)} (Figure 10.11c)
because they are not matched in M while Bob prefers Lea to Ann and Lea
prefers Bob to Jim. A marriage matching M is called stable if there is no blocking
pair for it; otherwise, M is called unstable. According to this definition, the
marriage matching in Figure 10.11c is unstable because Bob and Lea can drop their
designated mates to join in a union they both prefer. The stable marriage problem
is to find a stable marriage matching for men’s and women’s given preferences.

Surprisingly, this problem always has a solution. (Can you find it for the
instance in Figure 10.11?) It can be found by the following algorithm.

Stable marriage algorithm

Input: A set of n men and a set of n women along with rankings of the women
by each man and rankings of the men by each woman with no ties
allowed in the rankings

Output: A stable marriage matching

Step 0 Start with all the men and women being free.
Step 1 While there are free men, arbitrarily select one of them and do the

following:
Proposal The selected free man m proposes to w, the next
woman on his preference list (who is the highest-ranked woman
who has not rejected him before).
Response If w is free, she accepts the proposal to be matched
with m. If she is not free, she compares m with her current mate. If
she prefers m to him, she accepts m’s proposal, making her former
mate free; otherwise, she simply rejects m’s proposal, leaving m

free.
Step 2 Return the set of n matched pairs.

Before we analyze this algorithm, it is useful to trace it on some input. Such
an example is presented in Figure 10.12.

Let us discuss properties of the stable marriage algorithm.

THEOREM The stable marriage algorithm terminates after no more than n2

iterations with a stable marriage output.

PROOF The algorithm starts with n men having the total of n2 women on their
ranking lists. On each iteration, one man makes a proposal to a woman. This
reduces the total number of women to whom the men can still propose in the
future because no man proposes to the same woman more than once. Hence, the
algorithm must stop after no more than n2 iterations.



382 Iterative Improvement

Free men:
Bob, Jim, Tom

Ann Lea Sue
Bob 2, 3 1,2 3, 3
Jim 3, 1 1, 3 2, 1
Tom 3, 2 2, 1 1, 2

Bob proposed to Lea
Lea accepted

Free men:
Jim, Tom

Ann Lea Sue
Bob 2, 3 1,2 3, 3
Jim 3, 1 1, 3 2, 1
Tom 3, 2 2, 1 1, 2

Jim proposed to Lea
Lea rejected

Free men:
Jim, Tom

Ann Lea Sue
Bob 2, 3 1,2 3, 3
Jim 3, 1 1, 3 2,1
Tom 3, 2 2, 1 1, 2

Jim proposed to Sue
Sue accepted

Free men:
Tom

Ann Lea Sue
Bob 2, 3 1,2 3, 3
Jim 3, 1 1, 3 2,1
Tom 3, 2 2, 1 1, 2

Tom proposed to Sue
Sue rejected

Free men:
Tom

Ann Lea Sue
Bob 2, 3 1, 2 3, 3
Jim 3, 1 1, 3 2,1
Tom 3, 2 2,1 1, 2

Tom proposed to Lea
Lea replaced Bob with Tom

Free men:
Bob

Ann Lea Sue
Bob 2,3 1, 2 3, 3
Jim 3, 1 1, 3 2,1
Tom 3, 2 2,1 1, 2

Bob proposed to Ann
Ann accepted

FIGURE 10.12 Application of the stable marriage algorithm. An accepted proposal is
indicated by a boxed cell; a rejected proposal is shown by an underlined
cell.

Let us now prove that the final matching M is a stable marriage matching.
Since the algorithm stops after all the n men are one-one matched to the n women,
the only thing that needs to be proved is the stability of M. Suppose, on the
contrary, that M is unstable. Then there exists a blocking pair of a man m and a
woman w who are unmatched in M and such that both m and w prefer each other
to the persons they are matched with in M. Since m proposes to every woman on
his ranking list in decreasing order of preference and w precedes m’s match in M,

m must have proposed to w on some iteration. Whether w refused m’s proposal or
accepted it but replaced him on a subsequent iteration with a higher-ranked match,
w’s mate in M must be higher on w’s preference list than m because the rankings
of the men matched to a given woman may only improve on each iteration of the
algorithm. This contradicts the assumption that w prefers m to her final match
in M .

The stable marriage algorithm has a notable shortcoming. It is not “gender
neutral.” In the form presented above, it favors men’s preferences over women’s
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preferences. We can easily see this by tracing the algorithm on the following
instance of the problem:

woman 1 woman 2
man 1 1, 2 2, 1
man 2 2, 1 1, 2

The algorithm obviously yields the stable matching M = {(man 1, woman 1), (man
2, woman 2)}. In this matching, both men are matched to their first choices, which
is not the case for the women. One can prove that the algorithm always yields a
stable matching that is man-optimal: it assigns to each man the highest-ranked
woman possible under any stable marriage. Of course, this gender bias can be
reversed, but not eliminated, by reversing the roles played by men and women
in the algorithm, i.e., by making women propose and men accept or reject their
proposals.

There is another important corollary to the fact that the stable marriage
algorithm always yields a gender-optimal stable matching. It is easy to prove
that a man (woman)-optimal matching is unique for a given set of participant
preferences. Therefore the algorithm’s output does not depend on the order in
which the free men (women) make their proposals. Consequently, we can use any
data structure we might prefer—e.g., a queue or a stack—for representing this set
with no impact on the algorithm’s outcome.

The notion of the stable matching as well as the algorithm discussed above was
introduced by D. Gale and L. S. Shapley in the paper titled “College Admissions
and the Stability of Marriage” [Gal62]. I do not know which of the two applications
mentioned in the title you would consider more important. The point is that
stability is a matching property that can be desirable in a variety of applications.
For example, it has been used for many years in the United States for matching
medical-school graduates with hospitals for residency training. For a brief history
of this application and an in-depth discussion of the stable marriage problem and
its extensions, see the monograph by Gusfield and Irwing [Gus89].

Exercises 10.4

1. Consider an instance of the stable marriage problem given by the following
ranking matrix:

A B C

α 1, 3 2, 2 3, 1
β 3, 1 1, 3 2, 2
γ 2, 2 3, 1 1, 3

For each of its marriage matchings, indicate whether it is stable or not. For the
unstable matchings, specify a blocking pair. For the stable matchings, indicate
whether they are man-optimal, woman-optimal, or neither. (Assume that the
Greek and Roman letters denote the men and women, respectively.)
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2. Design a simple algorithm for checking whether a given marriage matching is
stable and determine its time efficiency class.

3. Find a stable marriage matching for the instance given in Problem 1 by apply-
ing the stable marriage algorithm
a. in its men-proposing version.

b. in its women-proposing version.

4. Find a stable marriage matching for the instance defined by the following
ranking matrix:

A B C D

α 1, 3 2, 3 3, 2 4, 3
β 1, 4 4, 1 3, 4 2, 2
γ 2, 2 1, 4 3, 3 4, 1
δ 4, 1 2, 2 3, 1 1, 4

5. Determine the time-efficiency class of the stable marriage algorithm
a. in the worst case.

b. in the best case.

6. Prove that a man-optimal stable marriage set is always unique. Is it also true
for a woman-optimal stable marriage matching?

7. Prove that in the man-optimal stable matching, each woman has the worst
partner that she can have in any stable marriage matching.

8. Implement the stable-marriage algorithm given in Section 10.4 so that its
running time is in O(n2). Run an experiment to ascertain its average-case
efficiency.

9. Write a report on the college admission problem (residents-hospitals assign-
ment) that generalizes the stable marriage problem in that a college can accept
“proposals” from more than one applicant.

10. Consider the problem of the roommates, which is related to but more difficult
than the stable marriage problem: “An even number of boys wish to divide up
into pairs of roommates. A set of pairings is called stable if under it there are
no two boys who are not roommates and who prefer each other to their actual
roommates.” [Gal62] Give an instance of this problem that does not have a
stable pairing.

SUMMARY

The iterative-improvement technique involves finding a solution to an op-
timization problem by generating a sequence of feasible solutions with
improving values of the problem’s objective function. Each subsequent so-
lution in such a sequence typically involves a small, localized change in the
previous feasible solution. When no such change improves the value of the
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objective function, the algorithm returns the last feasible solution as optimal
and stops.

Important problems that can be solved exactly by iterative-improvement
algorithms include linear programming, maximizing the flow in a network,
and matching the maximum possible number of vertices in a graph.

The simplex method is the classic method for solving the general linear
programming problem. It works by generating a sequence of adjacent extreme
points of the problem’s feasible region with improving values of the objective
function.

The maximum-flow problem asks to find the maximum flow possible in a
network, a weighted directed graph with a source and a sink.

The Ford-Fulkerson method is a classic template for solving the maximum-
flow problem by the iterative-improvement approach. The shortest-
augmenting-path method implements this idea by labeling network vertices
in the breadth-first search manner.

The Ford-Fulkerson method also finds a minimum cut in a given network.

A maximum cardinality matching is the largest subset of edges in a graph
such that no two edges share the same vertex. For a bipartite graph, it can be
found by a sequence of augmentations of previously obtained matchings.

The stable marriage problem is to find a stable matching for elements of two n-
element sets based on given matching preferences. This problem always has
a solution that can be found by the Gale-Shapley algorithm.
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11
Limitations of Algorithm Power

Intellect distinguishes between the possible and the impossible; reason
distinguishes between the sensible and the senseless. Even the possible can
be senseless.

—Max Born (1882–1970), My Life and My Views, 1968

In the preceding chapters of this book, we encountered dozens of algorithms
for solving a variety of different problems. A fair assessment of algorithms as

problem-solving tools is inescapable: they are very powerful instruments, espe-
cially when they are executed by modern computers. But the power of algorithms
is not unlimited, and its limits are the subject of this chapter. As we shall see, some
problems cannot be solved by any algorithm. Other problems can be solved algo-
rithmically but not in polynomial time. And even when a problem can be solved
in polynomial time by some algorithms, there are usually lower bounds on their
efficiency.

We start, in Section 11.1, with methods for obtaining lower bounds, which are
estimates on a minimum amount of work needed to solve a problem. In general,
obtaining a nontrivial lower bound even for a simple-sounding problem is a very
difficult task. As opposed to ascertaining the efficiency of a particular algorithm,
the task here is to establish a limit on the efficiency of any algorithm, known or
unknown. This also necessitates a careful description of the operations such algo-
rithms are allowed to perform. If we fail to define carefully the “rules of the game,”
so to speak, our claims may end up in the large dustbin of impossibility-related
statements as, for example, the one made by the celebrated British physicist Lord
Kelvin in 1895: “Heavier-than-air flying machines are impossible.”

Section 11.2 discusses decision trees. This technique allows us, among other
applications, to establish lower bounds on the efficiency of comparison-based
algorithms for sorting and for searching in sorted arrays. As a result, we will be
able to answer such questions as whether it is possible to invent a faster sorting
algorithm than mergesort and whether binary search is the fastest algorithm for
searching in a sorted array. (What does your intuition tell you the answers to these
questions will turn out to be?) Incidentally, decision trees are also a great vehicle

387
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for directing us to a solution of some puzzles, such as the coin-weighing problem
discussed in Section 4.4.

Section 11.3 deals with the question of intractability: which problems can
and cannot be solved in polynomial time. This well-developed area of theoretical
computer science is called computational complexity theory. We present the basic
elements of this theory and discuss informally such fundamental notions as P, NP,
and NP-complete problems, including the most important unresolved question of
theoretical computer science about the relationship between P and NP problems.

The last section of this chapter deals with numerical analysis. This branch
of computer science concerns algorithms for solving problems of “continuous”
mathematics—solving equations and systems of equations, evaluating such func-
tions as sin x and ln x, computing integrals, and so on. The nature of such problems
imposes two types of limitations. First, most cannot be solved exactly. Second,
solving them even approximately requires dealing with numbers that can be rep-
resented in a digital computer with only a limited level of precision. Manipulating
approximate numbers without proper care can lead to very inaccurate results. We
will see that even solving a basic quadratic equation on a computer poses sig-
nificant difficulties that require a modification of the canonical formula for the
equation’s roots.

11.1 Lower-Bound Arguments

We can look at the efficiency of an algorithm two ways. We can establish its asymp-
totic efficiency class (say, for the worst case) and see where this class stands with
respect to the hierarchy of efficiency classes outlined in Section 2.2. For exam-
ple, selection sort, whose efficiency is quadratic, is a reasonably fast algorithm,
whereas the algorithm for the Tower of Hanoi problem is very slow because its ef-
ficiency is exponential. We can argue, however, that this comparison is akin to the
proverbial comparison of apples to oranges because these two algorithms solve
different problems. The alternative and possibly “fairer” approach is to ask how
efficient a particular algorithm is with respect to other algorithms for the same
problem. Seen in this light, selection sort has to be considered slow because there
are O(n log n) sorting algorithms; the Tower of Hanoi algorithm, on the other
hand, turns out to be the fastest possible for the problem it solves.

When we want to ascertain the efficiency of an algorithm with respect to other
algorithms for the same problem, it is desirable to know the best possible efficiency
any algorithm solving the problem may have. Knowing such a lower bound can
tell us how much improvement we can hope to achieve in our quest for a better
algorithm for the problem in question. If such a bound is tight, i.e., we already
know an algorithm in the same efficiency class as the lower bound, we can hope
for a constant-factor improvement at best. If there is a gap between the efficiency
of the fastest algorithm and the best lower bound known, the door for possible
improvement remains open: either a faster algorithm matching the lower bound
could exist or a better lower bound could be proved.
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In this section, we present several methods for establishing lower bounds and
illustrate them with specific examples. As we did in analyzing the efficiency of
specific algorithms in the preceding chapters, we should distinguish between a
lower-bound class and a minimum number of times a particular operation needs
to be executed. As a rule, the second problem is more difficult than the first.
For example, we can immediately conclude that any algorithm for finding the
median of n numbers must be in �(n) (why?), but it is not simple at all to prove
that any comparison-based algorithm for this problem must do at least 3(n − 1)/2
comparisons in the worst case (for odd n).

Trivial Lower Bounds

The simplest method of obtaining a lower-bound class is based on counting the
number of items in the problem’s input that must be processed and the number of
output items that need to be produced. Since any algorithm must at least “read” all
the items it needs to process and “write” all its outputs, such a count yields a trivial
lower bound . For example, any algorithm for generating all permutations of n

distinct items must be in �(n!) because the size of the output is n!. And this bound
is tight because good algorithms for generating permutations spend a constant
time on each of them except the initial one (see Section 4.3).

As another example, consider the problem of evaluating a polynomial of
degree n

p(x) = anx
n + an−1x

n−1 + . . . + a0

at a given point x, given its coefficients an, an−1, . . . , a0. It is easy to see that all the
coefficients have to be processed by any polynomial-evaluation algorithm. Indeed,
if it were not the case, we could change the value of an unprocessed coefficient,
which would change the value of the polynomial at a nonzero point x. This means
that any such algorithm must be in �(n). This lower bound is tight because both
the right-to-left evaluation algorithm (Problem 2 in Exercises 6.5) and Horner’s
rule (Section 6.5) are both linear.

In a similar vein, a trivial lower bound for computing the product of two
n × n matrices is �(n2) because any such algorithm has to process 2n2 elements
in the input matrices and generate n2 elements of the product. It is still unknown,
however, whether this bound is tight.

Trivial lower bounds are often too low to be useful. For example, the trivial
bound for the traveling salesman problem is �(n2), because its input is n(n − 1)/2
intercity distances and its output is a list of n + 1 cities making up an optimal tour.
But this bound is all but useless because there is no known algorithm with the
running time being a polynomial function of any degree.

There is another obstacle to deriving a meaningful lower bound by this
method. It lies in determining which part of an input must be processed by any
algorithm solving the problem in question. For example, searching for an ele-
ment of a given value in a sorted array does not require processing all its elements
(why?). As another example, consider the problem of determining connectivity of
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an undirected graph defined by its adjacency matrix. It is plausible to expect that
any such algorithm would have to check the existence of each of the n(n − 1)/2
potential edges, but the proof of this fact is not trivial.

Information-Theoretic Arguments

While the approach outlined above takes into account the size of a problem’s
output, the information-theoretical approach seeks to establish a lower bound
based on the amount of information it has to produce. Consider, as an example,
the well-known game of deducing a positive integer between 1 and n selected
by somebody by asking that person questions with yes/no answers. The amount of
uncertainty that any algorithm solving this problem has to resolve can be measured
by �log2 n�, the number of bits needed to specify a particular number among the
n possibilities. We can think of each question (or, to be more accurate, an answer
to each question) as yielding at most 1 bit of information about the algorithm’s
output, i.e., the selected number. Consequently, any such algorithm will need at
least �log2 n� such steps before it can determine its output in the worst case.

The approach we just exploited is called the information-theoretic argument
because of its connection to information theory. It has proved to be quite useful
for finding the so-called information-theoretic lower bounds for many problems
involving comparisons, including sorting and searching. Its underlying idea can be
realized much more precisely through the mechanism of decision trees. Because
of the importance of this technique, we discuss it separately and in more detail in
Section 11.2.

Adversary Arguments

Let us revisit the same game of “guessing” a number used to introduce the idea of
an information-theoretic argument. We can prove that any algorithm that solves
this problem must ask at least �log2 n� questions in its worst case by playing the
role of a hostile adversary who wants to make an algorithm ask as many questions
as possible. The adversary starts by considering each of the numbers between
1 and n as being potentially selected. (This is cheating, of course, as far as the
game is concerned, but not as a way to prove our assertion.) After each question,
the adversary gives an answer that leaves him with the largest set of numbers
consistent with this and all the previously given answers. This strategy leaves
him with at least one-half of the numbers he had before his last answer. If an
algorithm stops before the size of the set is reduced to 1, the adversary can exhibit
a number that could be a legitimate input the algorithm failed to identify. It is a
simple technical matter now to show that one needs �log2 n� iterations to shrink
an n-element set to a one-element set by halving and rounding up the size of the
remaining set. Hence, at least �log2 n� questions need to be asked by any algorithm
in the worst case.

This example illustrates the adversary method for establishing lower bounds.
It is based on following the logic of a malevolent but honest adversary: the malev-
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olence makes him push the algorithm down the most time-consuming path, and
his honesty forces him to stay consistent with the choices already made. A lower
bound is then obtained by measuring the amount of work needed to shrink a set
of potential inputs to a single input along the most time-consuming path.

As another example, consider the problem of merging two sorted lists of size n

a1 < a2 < . . . < an and b1 < b2 < . . . < bn

into a single sorted list of size 2n. For simplicity, we assume that all the a’s and
b’s are distinct, which gives the problem a unique solution. We encountered this
problem when discussing mergesort in Section 5.1. Recall that we did merging by
repeatedly comparing the first elements in the remaining lists and outputting the
smaller among them. The number of key comparisons in the worst case for this
algorithm for merging is 2n − 1.

Is there an algorithm that can do merging faster? The answer turns out to
be no. Knuth [KnuIII, p. 198] quotes the following adversary method for proving
that 2n − 1 is a lower bound on the number of key comparisons made by any
comparison-based algorithm for this problem. The adversary will employ the
following rule: reply true to the comparison ai < bj if and only if i < j. This will
force any correct merging algorithm to produce the only combined list consistent
with this rule:

b1 < a1 < b2 < a2 < . . . < bn < an.

To produce this combined list, any correct algorithm will have to explicitly com-
pare 2n − 1 adjacent pairs of its elements, i.e., b1 to a1, a1 to b2, and so on. If one
of these comparisons has not been made, e.g., a1 has not been compared to b2, we
can transpose these keys to get

b1 < b2 < a1 < a2 < . . . < bn < an,

which is consistent with all the comparisons made but cannot be distinguished
from the correct configuration given above. Hence, 2n − 1 is, indeed, a lower
bound for the number of key comparisons needed for any merging algorithm.

Problem Reduction

We have already encountered the problem-reduction approach in Section 6.6.
There, we discussed getting an algorithm for problem P by reducing it to another
problem Q solvable with a known algorithm. A similar reduction idea can be used
for finding a lower bound. To show that problem P is at least as hard as another
problem Q with a known lower bound, we need to reduce Q to P (not P to Q!).
In other words, we should show that an arbitrary instance of problem Q can be
transformed (in a reasonably efficient fashion) to an instance of problem P, so
any algorithm solving P would solve Q as well. Then a lower bound for Q will be
a lower bound for P. Table 11.1 lists several important problems that are often
used for this purpose.
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TABLE 11.1 Problems often used for establishing lower bounds
by problem reduction

Problem Lower bound Tightness

sorting �(n log n) yes
searching in a sorted array �(log n) yes
element uniqueness problem �(n log n) yes
multiplication of n-digit integers �(n) unknown
multiplication of n × n matrices �(n2) unknown

We will establish the lower bounds for sorting and searching in the next sec-
tion. The element uniqueness problem asks whether there are duplicates among n

given numbers. (We encountered this problem in Sections 2.3 and 6.1.) The proof
of the lower bound for this seemingly simple problem is based on a very sophisti-
cated mathematical analysis that is well beyond the scope of this book (see, e.g.,
[Pre85] for a rather elementary exposition). As to the last two algebraic prob-
lems in Table 11.1, the lower bounds quoted are trivial, but whether they can be
improved remains unknown.

As an example of establishing a lower bound by reduction, let us consider
the Euclidean minimum spanning tree problem: given n points in the Cartesian
plane, construct a tree of minimum total length whose vertices are the given
points. As a problem with a known lower bound, we use the element uniqueness
problem. We can transform any set x1, x2, . . . , xn of n real numbers into a set
of n points in the Cartesian plane by simply adding 0 as the points’ y coordinate:
(x1, 0), (x2, 0), . . . , (xn, 0). Let T be a minimum spanning tree found for this set of
points. Since T must contain a shortest edge, checking whether T contains a zero-
length edge will answer the question about uniqueness of the given numbers. This
reduction implies that �(n log n) is a lower bound for the Euclidean minimum
spanning tree problem, too.

Since the final results about the complexity of many problems are not known,
the reduction technique is often used to compare the relative complexity of prob-
lems. For example, the formulas

x . y = (x + y)2 − (x − y)2

4
and x2 = x . x

show that the problems of computing the product of two n-digit integers and
squaring an n-digit integer belong to the same complexity class, despite the latter
being seemingly simpler than the former.

There are several similar results for matrix operations. For example, multi-
plying two symmetric matrices turns out to be in the same complexity class as
multiplying two arbitrary square matrices. This result is based on the observation
that not only is the former problem a special case of the latter one, but also that
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we can reduce the problem of multiplying two arbitrary square matrices of order
n, say, A and B, to the problem of multiplying two symmetric matrices

X =
[

0 A

AT 0

]
and Y =

[
0 BT

B 0

]
,

where AT and BT are the transpose matrices of A and B (i.e., AT [i, j ] = A[j, i] and
BT [i, j ] = B[j, i]), respectively, and 0 stands for the n × n matrix whose elements
are all zeros. Indeed,

XY =
[

0 A

AT 0

] [
0 BT

B 0

]
=
[

AB 0
0 AT BT

]
,

from which the needed product AB can be easily extracted. (True, we will have
to multiply matrices twice the original size, but this is just a minor technical
complication with no impact on the complexity classes.)

Though such results are interesting, we will encounter even more important
applications of the reduction approach to comparing problem complexity in Sec-
tion 11.3.

Exercises 11.1

1. Prove that any algorithm solving the alternating-disk puzzle (Problem 14 in
Exercises 3.1) must make at least n(n + 1)/2 moves to solve it. Is this lower
bound tight?

2. Prove that the classic recursive algorithm for the Tower of Hanoi puzzle
(Section 2.4) makes the minimum number of disk moves needed to solve the
problem.

3. Find a trivial lower-bound class for each of the following problems and indi-
cate, if you can, whether this bound is tight.
a. finding the largest element in an array

b. checking completeness of a graph represented by its adjacency matrix

c. generating all the subsets of an n-element set

d. determining whether n given real numbers are all distinct

4. Consider the problem of identifying a lighter fake coin among n identical-
looking coins with the help of a balance scale. Can we use the same
information-theoretic argument as the one in the text for the number of ques-
tions in the guessing game to conclude that any algorithm for identifying the
fake will need at least �log2 n� weighings in the worst case?

5. Prove that any comparison-based algorithm for finding the largest element of
an n-element set of real numbers must make n − 1 comparisons in the worst
case.
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6. Find a tight lower bound for sorting an array by exchanging its adjacent
elements.

7. Give an adversary-argument proof that the time efficiency of any algorithm
that checks connectivity of a graph with n vertices is in �(n2), provided the
only operation allowed for an algorithm is to inquire about the presence of
an edge between two vertices of the graph. Is this lower bound tight?

8. What is the minimum number of comparisons needed for a comparison-based
sorting algorithm to merge any two sorted lists of sizes n and n + 1 elements,
respectively? Prove the validity of your answer.

9. Find the product of matrices A and B through a transformation to a product
of two symmetric matrices if

A =
[

1 −1
2 3

]
and B =

[
0 1

−1 2

]
.

10. a. Can one use this section’s formulas that indicate the complexity equiva-
lence of multiplication and squaring of integers to show the complexity
equivalence of multiplication and squaring of square matrices?

b. Show that multiplication of two matrices of order n can be reduced to
squaring a matrix of order 2n.

11. Find a tight lower-bound class for the problem of finding two closest numbers
among n real numbers x1, x2, . . . , xn.

12. Find a tight lower-bound class for the number placement problem (Problem 9
in Exercises 6.1).

11.2 Decision Trees

Many important algorithms, especially those for sorting and searching, work by
comparing items of their inputs. We can study the performance of such algorithms
with a device called a decision tree. As an example, Figure 11.1 presents a decision
tree of an algorithm for finding a minimum of three numbers. Each internal node
of a binary decision tree represents a key comparison indicated in the node,
e.g., k < k′. The node’s left subtree contains the information about subsequent
comparisons made if k < k′, and its right subtree does the same for the case of
k > k′. (For the sake of simplicity, we assume throughout this section that all input
items are distinct.) Each leaf represents a possible outcome of the algorithm’s
run on some input of size n. Note that the number of leaves can be greater than
the number of outcomes because, for some algorithms, the same outcome can
be arrived at through a different chain of comparisons. (This happens to be the
case for the decision tree in Figure 11.1.) An important point is that the number of
leaves must be at least as large as the number of possible outcomes. The algorithm’s
work on a particular input of size n can be traced by a path from the root to a leaf
in its decision tree, and the number of comparisons made by the algorithm on such
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FIGURE 11.1 Decision tree for finding a minimum of three numbers.

a run is equal to the length of this path. Hence, the number of comparisons in the
worst case is equal to the height of the algorithm’s decision tree.

The central idea behind this model lies in the observation that a tree with a
given number of leaves, which is dictated by the number of possible outcomes, has
to be tall enough to have that many leaves. Specifically, it is not difficult to prove
that for any binary tree with l leaves and height h,

h ≥ �log2 l�. (11.1)

Indeed, a binary tree of height h with the largest number of leaves has all its leaves
on the last level (why?). Hence, the largest number of leaves in such a tree is 2h.
In other words, 2h ≥ l, which immediately implies (11.1).

Inequality (11.1) puts a lower bound on the heights of binary decision trees
and hence the worst-case number of comparisons made by any comparison-based
algorithm for the problem in question. Such a bound is called the information-
theoretic lower bound (see Section 11.1). We illustrate this technique below on
two important problems: sorting and searching in a sorted array.

Decision Trees for Sorting

Most sorting algorithms are comparison based, i.e., they work by comparing
elements in a list to be sorted. By studying properties of decision trees for such
algorithms, we can derive important lower bounds on their time efficiencies.

We can interpret an outcome of a sorting algorithm as finding a permutation of
the element indices of an input list that puts the list’s elements in ascending order.
Consider, as an example, a three-element list a, b, c of orderable items such as
real numbers or strings. For the outcome a < c < b obtained by sorting this list
(see Figure 11.2), the permutation in question is 1, 3, 2. In general, the number of
possible outcomes for sorting an arbitrary n-element list is equal to n!.
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FIGURE 11.2 Decision tree for the tree-element selection sort. A triple above a
node indicates the state of the array being sorted. Note two redundant
comparisons b < a with a single possible outcome because of the results
of some previously made comparisons.

Inequality (11.1) implies that the height of a binary decision tree for any
comparison-based sorting algorithm and hence the worst-case number of com-
parisons made by such an algorithm cannot be less than �log2 n!�:

Cworst(n) ≥ �log2 n!�. (11.2)

Using Stirling’s formula for n!, we get

�log2 n!� ≈ log2

√
2πn(n/e)n = n log2 n − n log2 e + log2 n

2
+ log2 2π

2
≈ n log2 n.

In other words, about n log2 n comparisons are necessary in the worst case to sort
an arbitrary n-element list by any comparison-based sorting algorithm. Note that
mergesort makes about this number of comparisons in its worst case and hence is
asymptotically optimal. This also implies that the asymptotic lower bound n log2 n

is tight and therefore cannot be substantially improved. We should point out,
however, that the lower bound of �log2 n!� can be improved for some values of
n. For example, �log2 12!� = 29, but it has been proved that 30 comparisons are
necessary (and sufficient) to sort an array of 12 elements in the worst case.

We can also use decision trees for analyzing the average-case efficiencies of
comparison-based sorting algorithms. We can compute the average number of
comparisons for a particular algorithm as the average depth of its decision tree’s
leaves, i.e., as the average path length from the root to the leaves. For example, for
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FIGURE 11.3 Decision tree for the three-element insertion sort.

the three-element insertion sort whose decision tree is given in Figure 11.3, this
number is (2 + 3 + 3 + 2 + 3 + 3)/6 = 2 2

3 .

Under the standard assumption that all n! outcomes of sorting are equally
likely, the following lower bound on the average number of comparisons Cavg

made by any comparison-based algorithm in sorting an n-element list has been
proved:

Cavg(n) ≥ log2 n!. (11.3)

As we saw earlier, this lower bound is about n log2 n. You might be surprised that
the lower bounds for the average and worst cases are almost identical. Remember,
however, that these bounds are obtained by maximizing the number of compar-
isons made in the average and worst cases, respectively. For a particular sorting
algorithm, the average-case efficiency can, of course, be significantly better than
their worst-case efficiency.

Decision Trees for Searching a Sorted Array

In this section, we shall see how decision trees can be used for establishing lower
bounds on the number of key comparisons in searching a sorted array of n keys:
A[0] < A[1] < . . . < A[n − 1]. The principal algorithm for this problem is binary
search. As we saw in Section 4.4, the number of comparisons made by binary
search in the worst case, Cbs

worst
(n), is given by the formula

Cbs
worst

(n) = �log2 n� + 1 = �log2(n + 1)�. (11.4)
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FIGURE 11.4 Ternary decision tree for binary search in a four-element array.

We will use decision trees to determine whether this is the smallest possible
number of comparisons.

Since we are dealing here with three-way comparisons in which search key K is
compared with some element A[i] to see whether K < A[i], K = A[i], or K > A[i],
it is natural to try using ternary decision trees. Figure 11.4 presents such a tree for
the case of n = 4. The internal nodes of that tree indicate the array’s elements being
compared with the search key. The leaves indicate either a matching element in
the case of a successful search or a found interval that the search key belongs to
in the case of an unsuccessful search.

We can represent any algorithm for searching a sorted array by three-way
comparisons with a ternary decision tree similar to that in Figure 11.4. For an
array of n elements, all such decision trees will have 2n + 1 leaves (n for successful
searches and n + 1 for unsuccessful ones). Since the minimum height h of a ternary
tree with l leaves is �log3 l�, we get the following lower bound on the number of
worst-case comparisons:

Cworst(n) ≥ �log3(2n + 1)�.
This lower bound is smaller than �log2(n + 1)�, the number of worst-case

comparisons for binary search, at least for large values of n (and smaller than or
equal to �log2(n + 1)� for every positive integer n—see Problem 7 in this section’s
exercises). Can we prove a better lower bound, or is binary search far from
being optimal? The answer turns out to be the former. To obtain a better lower
bound, we should consider binary rather than ternary decision trees, such as the
one in Figure 11.5. Internal nodes in such a tree correspond to the same three-
way comparisons as before, but they also serve as terminal nodes for successful
searches. Leaves therefore represent only unsuccessful searches, and there are
n + 1 of them for searching an n-element array.
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FIGURE 11.5 Binary decision tree for binary search in a four-element array.

As comparison of the decision trees in Figures 11.4 and 11.5 illustrates, the
binary decision tree is simply the ternary decision tree with all the middle subtrees
eliminated. Applying inequality (11.1) to such binary decision trees immediately
yields

Cworst(n) ≥ �log2(n + 1)�. (11.5)

This inequality closes the gap between the lower bound and the number of worst-
case comparisons made by binary search, which is also �log2(n + 1)�. A much
more sophisticated analysis (see, e.g., [KnuIII, Section 6.2.1]) shows that under the
standard assumptions about searches, binary search makes the smallest number
of comparisons on the average, as well. The average number of comparisons made
by this algorithm turns out to be about log2 n − 1 and log2(n + 1) for successful
and unsuccessful searches, respectively.

Exercises 11.2

1. Prove by mathematical induction that
a. h ≥ �log2 l� for any binary tree with height h and the number of leaves l.

b. h ≥ �log3 l� for any ternary tree with height h and the number of leaves l.

2. Consider the problem of finding the median of a three-element set {a, b, c}
of orderable items.
a. What is the information-theoretic lower bound for comparison-based al-

gorithms solving this problem?

b. Draw a decision tree for an algorithm solving this problem.

c. If the worst-case number of comparisons in your algorithm is greater
than the information-theoretic lower bound, do you think an algorithm
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matching the lower bound exists? (Either find such an algorithm or prove
its impossibility.)

3. Draw a decision tree and find the number of key comparisons in the worst
and average cases for
a. the three-element basic bubble sort.

b. the three-element enhanced bubble sort (which stops if no swaps have been
made on its last pass).

4. Design a comparison-based algorithm for sorting a four-element array with
the smallest number of element comparisons possible.

5. Design a comparison-based algorithm for sorting a five-element array with
seven comparisons in the worst case.

6. Draw a binary decision tree for searching a four-element sorted list by sequen-
tial search.

7. Compare the two lower bounds for searching a sorted array—�log3(2n + 1)�
and �log2(n + 1)�—to show that
a. �log3(2n + 1)� ≤ �log2(n + 1)� for every positive integer n.

b. �log3(2n + 1)� < �log2(n + 1)� for every positive integer n ≥ n0.

8. What is the information-theoretic lower bound for finding the maximum of n

numbers by comparison-based algorithms? Is this bound tight?

9. A tournament tree is a complete binary tree reflecting results of a “knockout
tournament”: its leaves represent n players entering the tournament, and
each internal node represents a winner of a match played by the players
represented by the node’s children. Hence, the winner of the tournament is
represented by the root of the tree.
a. What is the total number of games played in such a tournament?

b. How many rounds are there in such a tournament?

c. Design an efficient algorithm to determine the second-best player using
the information produced by the tournament. How many extra games does
your algorithm require?

10. Advanced fake-coin problem There are n ≥ 3 coins identical in appearance;
either all are genuine or exactly one of them is fake. It is unknown whether
the fake coin is lighter or heavier than the genuine one. You have a balance
scale with which you can compare any two sets of coins. That is, by tipping to
the left, to the right, or staying even, the balance scale will tell whether the
sets weigh the same or which of the sets is heavier than the other, but not by
how much. The problem is to find whether all the coins are genuine and, if
not, to find the fake coin and establish whether it is lighter or heavier than the
genuine ones.
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a. Prove that any algorithm for this problem must make at least �log3(2n + 1)�
weighings in the worst case.

b. Draw a decision tree for an algorithm that solves the problem for n = 3
coins in two weighings.

c. Prove that there exists no algorithm that solves the problem for n = 4 coins
in two weighings.

d. Draw a decision tree for an algorithm that solves the problem for n = 4
coins in two weighings by using an extra coin known to be genuine.

e. Draw a decision tree for an algorithm that solves the classic version of
the problem—that for n = 12 coins in three weighings (with no extra coins
being used).

11. Jigsaw puzzle A jigsaw puzzle contains n pieces. A “section” of the puzzle is
a set of one or more pieces that have been connected to each other. A “move”
consists of connecting two sections. What algorithm will minimize the number
of moves required to complete the puzzle?

11.3 P , NP , and NP-Complete Problems

In the study of the computational complexity of problems, the first concern of both
computer scientists and computing professionals is whether a given problem can
be solved in polynomial time by some algorithm.

DEFINITION 1 We say that an algorithm solves a problem in polynomial time
if its worst-case time efficiency belongs to O(p(n)) where p(n) is a polynomial of
the problem’s input size n. (Note that since we are using big-oh notation here,
problems solvable in, say, logarithmic time are solvable in polynomial time as
well.) Problems that can be solved in polynomial time are called tractable, and
problems that cannot be solved in polynomial time are called intractable.

There are several reasons for drawing the intractability line in this way. First,
the entries of Table 2.1 and their discussion in Section 2.1 imply that we cannot
solve arbitrary instances of intractable problems in a reasonable amount of time
unless such instances are very small. Second, although there might be a huge
difference between the running times in O(p(n)) for polynomials of drastically
different degrees, there are very few useful polynomial-time algorithms with the
degree of a polynomial higher than three. In addition, polynomials that bound
running times of algorithms do not usually have extremely large coefficients.
Third, polynomial functions possess many convenient properties; in particular,
both the sum and composition of two polynomials are always polynomials too.
Fourth, the choice of this class has led to a development of an extensive theory
called computational complexity, which seeks to classify problems according to
their inherent difficulty. And according to this theory, a problem’s intractability
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remains the same for all principal models of computations and all reasonable
input-encoding schemes for the problem under consideration.

We just touch on some basic notions and ideas of complexity theory in this
section. If you are interested in a more formal treatment of this theory, you will
have no trouble finding a wealth of textbooks devoted to the subject (e.g., [Sip05],
[Aro09]).

P and NP Problems

Most problems discussed in this book can be solved in polynomial time by some
algorithm. They include computing the product and the greatest common divisor
of two integers, sorting a list, searching for a key in a list or for a pattern in a text
string, checking connectivity and acyclicity of a graph, and finding a minimum
spanning tree and shortest paths in a weighted graph. (You are invited to add
more examples to this list.) Informally, we can think about problems that can be
solved in polynomial time as the set that computer science theoreticians call P. A
more formal definition includes in P only decision problems, which are problems
with yes/no answers.

DEFINITION 2 Class P is a class of decision problems that can be solved in
polynomial time by (deterministic) algorithms. This class of problems is called
polynomial.

The restriction of P to decision problems can be justified by the following
reasons. First, it is sensible to exclude problems not solvable in polynomial time
because of their exponentially large output. Such problems do arise naturally—
e.g., generating subsets of a given set or all the permutations of n distinct items—
but it is apparent from the outset that they cannot be solved in polynomial time.
Second, many important problems that are not decision problems in their most
natural formulation can be reduced to a series of decision problems that are easier
to study. For example, instead of asking about the minimum number of colors
needed to color the vertices of a graph so that no two adjacent vertices are colored
the same color, we can ask whether there exists such a coloring of the graph’s
vertices with no more than m colors for m = 1, 2, . . . . (The latter is called the m-
coloring problem.) The first value of m in this series for which the decision problem
of m-coloring has a solution solves the optimization version of the graph-coloring
problem as well.

It is natural to wonder whether every decision problem can be solved in
polynomial time. The answer to this question turns out to be no. In fact, some
decision problems cannot be solved at all by any algorithm. Such problems are
called undecidable, as opposed to decidable problems that can be solved by an
algorithm. A famous example of an undecidable problem was given by Alan



11.3 P , NP , and NP-Complete Problems 403

Turing in 1936.1 The problem in question is called the halting problem: given a
computer program and an input to it, determine whether the program will halt on
that input or continue working indefinitely on it.

Here is a surprisingly short proof of this remarkable fact. By way of contra-
diction, assume that A is an algorithm that solves the halting problem. That is, for
any program P and input I,

A(P, I ) =
{

1, if program P halts on input I ;
0, if program P does not halt on input I .

We can consider program P as an input to itself and use the output of algorithm
A for pair (P, P ) to construct a program Q as follows:

Q(P ) =
{

halts, if A(P, P ) = 0, i.e., if program P does not halt on input P ;
does not halt, if A(P, P ) = 1, i.e., if program P halts on input P .

Then on substituting Q for P, we obtain

Q(Q) =
{

halts, if A(Q, Q) = 0, i.e., if program Q does not halt on input Q;
does not halt, if A(Q, Q) = 1, i.e., if program Q halts on input Q.

This is a contradiction because neither of the two outcomes for program Q is
possible, which completes the proof.

Are there decidable but intractable problems? Yes, there are, but the number
of known examples is surprisingly small, especially of those that arise naturally
rather than being constructed for the sake of a theoretical argument.

There are many important problems, however, for which no polynomial-time
algorithm has been found, nor has the impossibility of such an algorithm been
proved. The classic monograph by M. Garey and D. Johnson [Gar79] contains a
list of several hundred such problems from different areas of computer science,
mathematics, and operations research. Here is just a small sample of some of the
best-known problems that fall into this category:

Hamiltonian circuit problem Determine whether a given graph has a
Hamiltonian circuit—a path that starts and ends at the same vertex and passes
through all the other vertices exactly once.
Traveling salesman problem Find the shortest tour through n cities with
known positive integer distances between them (find the shortest Hamiltonian
circuit in a complete graph with positive integer weights).

1. This was just one of many breakthrough contributions to theoretical computer science made by the
English mathematician and computer science pioneer Alan Turing (1912–1954). In recognition of this,
the ACM—the principal society of computing professionals and researchers—has named after him an
award given for outstanding contributions to theoretical computer science. A lecture given on such an
occasion by Richard Karp [Kar86] provides an interesting historical account of the development of
complexity theory.
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Knapsack problem Find the most valuable subset of n items of given positive
integer weights and values that fit into a knapsack of a given positive integer
capacity.
Partition problem Given n positive integers, determine whether it is possi-
ble to partition them into two disjoint subsets with the same sum.
Bin-packing problem Given n items whose sizes are positive rational num-
bers not larger than 1, put them into the smallest number of bins of size 1.
Graph-coloring problem For a given graph, find its chromatic number,
which is the smallest number of colors that need to be assigned to the graph’s
vertices so that no two adjacent vertices are assigned the same color.
Integer linear programming problem Find the maximum (or minimum)
value of a linear function of several integer-valued variables subject to a finite
set of constraints in the form of linear equalities and inequalities.

Some of these problems are decision problems. Those that are not have
decision-version counterparts (e.g., the m-coloring problem for the graph-coloring
problem). What all these problems have in common is an exponential (or worse)
growth of choices, as a function of input size, from which a solution needs to be
found. Note, however, that some problems that also fall under this umbrella can
be solved in polynomial time. For example, the Eulerian circuit problem—the
problem of the existence of a cycle that traverses all the edges of a given graph
exactly once—can be solved in O(n2) time by checking, in addition to the graph’s
connectivity, whether all the graph’s vertices have even degrees. This example is
particularly striking: it is quite counterintuitive to expect that the problem about
cycles traversing all the edges exactly once (Eulerian circuits) can be so much
easier than the seemingly similar problem about cycles visiting all the vertices
exactly once (Hamiltonian circuits).

Another common feature of a vast majority of decision problems is the fact
that although solving such problems can be computationally difficult, checking
whether a proposed solution actually solves the problem is computationally easy,
i.e., it can be done in polynomial time. (We can think of such a proposed solution
as being randomly generated by somebody leaving us with the task of verifying its
validity.) For example, it is easy to check whether a proposed list of vertices is a
Hamiltonian circuit for a given graph with n vertices. All we need to check is that
the list contains n + 1 vertices of the graph in question, that the first n vertices are
distinct whereas the last one is the same as the first, and that every consecutive
pair of the list’s vertices is connected by an edge. This general observation about
decision problems has led computer scientists to the notion of a nondeterministic
algorithm.

DEFINITION 3 A nondeterministic algorithm is a two-stage procedure that
takes as its input an instance I of a decision problem and does the following.

Nondeterministic (“guessing”) stage: An arbitrary string S is generated that
can be thought of as a candidate solution to the given instance I (but may be
complete gibberish as well).
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Deterministic (“verification”) stage: A deterministic algorithm takes both I

and S as its input and outputs yes if S represents a solution to instance I. (If S is
not a solution to instance I , the algorithm either returns no or is allowed not to
halt at all.)

We say that a nondeterministic algorithm solves a decision problem if and
only if for every yes instance of the problem it returns yes on some execu-
tion. (In other words, we require a nondeterministic algorithm to be capable
of “guessing” a solution at least once and to be able to verify its validity. And,
of course, we do not want it to ever output a yes answer on an instance for
which the answer should be no.) Finally, a nondeterministic algorithm is said to
be nondeterministic polynomial if the time efficiency of its verification stage is
polynomial.

Now we can define the class of NP problems.

DEFINITION 4 Class NP is the class of decision problems that can be solved by
nondeterministic polynomial algorithms. This class of problems is called nonde-
terministic polynomial.

Most decision problems are in NP. First of all, this class includes all the
problems in P :

P ⊆ NP.

This is true because, if a problem is in P , we can use the deterministic polynomial-
time algorithm that solves it in the verification-stage of a nondeterministic algo-
rithm that simply ignores string S generated in its nondeterministic (“guessing”)
stage. But NP also contains the Hamiltonian circuit problem, the partition prob-
lem, decision versions of the traveling salesman, the knapsack, graph coloring, and
many hundreds of other difficult combinatorial optimization problems cataloged
in [Gar79]. The halting problem, on the other hand, is among the rare examples
of decision problems that are known not to be in NP.

This leads to the most important open question of theoretical computer sci-
ence: Is P a proper subset of NP, or are these two classes, in fact, the same? We
can put this symbolically as

P
?= NP.

Note that P = NP would imply that each of many hundreds of difficult
combinatorial decision problems can be solved by a polynomial-time algorithm,
although computer scientists have failed to find such algorithms despite their per-
sistent efforts over many years. Moreover, many well-known decision problems
are known to be “NP-complete” (see below), which seems to cast more doubts
on the possibility that P = NP.
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NP -Complete Problems

Informally, an NP-complete problem is a problem in NP that is as difficult as any
other problem in this class because, by definition, any other problem in NP can
be reduced to it in polynomial time (shown symbolically in Figure 11.6).

Here are more formal definitions of these concepts.

DEFINITION 5 A decision problem D1 is said to be polynomially reducible to
a decision problem D2, if there exists a function t that transforms instances of D1
to instances of D2 such that:

1. t maps all yes instances of D1 to yes instances of D2 and all no instances of D1
to no instances of D2

2. t is computable by a polynomial time algorithm

This definition immediately implies that if a problem D1 is polynomially
reducible to some problem D2 that can be solved in polynomial time, then problem
D1 can also be solved in polynomial time (why?).

DEFINITION 6 A decision problem D is said to be NP-complete if:

1. it belongs to class NP
2. every problem in NP is polynomially reducible to D

The fact that closely related decision problems are polynomially reducible to
each other is not very surprising. For example, let us prove that the Hamiltonian
circuit problem is polynomially reducible to the decision version of the traveling

NP -complete problem

NP problems

FIGURE 11.6 Notion of an NP-complete problem. Polynomial-time reductions of NP
problems to an NP-complete problem are shown by arrows.
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salesman problem. The latter can be stated as the existence problem of a Hamil-
tonian circuit not longer than a given positive integer m in a given complete graph
with positive integer weights. We can map a graph G of a given instance of the
Hamiltonian circuit problem to a complete weighted graph G′ representing an in-
stance of the traveling salesman problem by assigning 1 as the weight to each edge
in G and adding an edge of weight 2 between any pair of nonadjacent vertices in
G. As the upper bound m on the Hamiltonian circuit length, we take m = n, where
n is the number of vertices in G (and G′). Obviously, this transformation can be
done in polynomial time.

Let G be a yes instance of the Hamiltonian circuit problem. Then G has a
Hamiltonian circuit, and its image in G′ will have length n, making the image a
yes instance of the decision traveling salesman problem. Conversely, if we have a
Hamiltonian circuit of the length not larger than n in G′, then its length must be
exactly n (why?) and hence the circuit must be made up of edges present in G,

making the inverse image of the yes instance of the decision traveling salesman
problem be a yes instance of the Hamiltonian circuit problem. This completes the
proof.

The notion of NP-completeness requires, however, polynomial reducibility of
all problems in NP, both known and unknown, to the problem in question. Given
the bewildering variety of decision problems, it is nothing short of amazing that
specific examples of NP-complete problems have been actually found. Neverthe-
less, this mathematical feat was accomplished independently by Stephen Cook
in the United States and Leonid Levin in the former Soviet Union.2 In his 1971
paper, Cook [Coo71] showed that the so-called CNF-satisfiability problem is NP-
complete. The CNF-satisfiability problem deals with boolean expressions. Each
boolean expression can be represented in conjunctive normal form, such as the
following expression involving three boolean variables x1, x2, and x3 and their
negations denoted x̄1, x̄2, and x̄3, respectively:

(x1 ∨ x̄2 ∨ x̄3)&(x̄1 ∨ x2)&(x̄1 ∨ x̄2 ∨ x̄3).

The CNF-satisfiability problem asks whether or not one can assign values true and
false to variables of a given boolean expression in its CNF form to make the entire
expression true. (It is easy to see that this can be done for the above formula: if
x1 = true, x2 = true, and x3 = false, the entire expression is true.)

Since the Cook-Levin discovery of the first known NP-complete problems,
computer scientists have found many hundreds, if not thousands, of other exam-
ples. In particular, the well-known problems (or their decision versions) men-
tioned above—Hamiltonian circuit, traveling salesman, partition, bin packing,
and graph coloring—are all NP-complete. It is known, however, that if P �= NP
there must exist NP problems that neither are in P nor are NP-complete.

2. As it often happens in the history of science, breakthrough discoveries are made independently and
almost simultaneously by several scientists. In fact, Levin introduced a more general notion than NP-
completeness, which was not limited to decision problems, but his paper [Lev73] was published two
years after Cook’s.
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For a while, the leading candidate to be such an example was the problem
of determining whether a given integer is prime or composite. But in an im-
portant theoretical breakthrough, Professor Manindra Agrawal and his students
Neeraj Kayal and Nitin Saxena of the Indian Institute of Technology in Kanpur
announced in 2002 a discovery of a deterministic polynomial-time algorithm for
primality testing [Agr04]. Their algorithm does not solve, however, the related
problem of factoring large composite integers, which lies at the heart of the widely
used encryption method called the RSA algorithm [Riv78].

Showing that a decision problem is NP-complete can be done in two steps.
First, one needs to show that the problem in question is in NP; i.e., a randomly
generated string can be checked in polynomial time to determine whether or not
it represents a solution to the problem. Typically, this step is easy. The second
step is to show that every problem in NP is reducible to the problem in question
in polynomial time. Because of the transitivity of polynomial reduction, this step
can be done by showing that a known NP-complete problem can be transformed
to the problem in question in polynomial time (see Figure 11.7). Although such
a transformation may need to be quite ingenious, it is incomparably simpler than
proving the existence of a transformation for every problem in NP. For example,
if we already know that the Hamiltonian circuit problem is NP-complete, its
polynomial reducibility to the decision traveling salesman problem implies that
the latter is also NP-complete (after an easy check that the decision traveling
salesman problem is in class NP).

The definition of NP-completeness immediately implies that if there exists a
deterministic polynomial-time algorithm for just one NP-complete problem, then
every problem in NP can be solved in polynomial time by a deterministic algo-
rithm, and hence P = NP. In other words, finding a polynomial-time algorithm

known
NP -complete

problem candidate for
NP -completeness

NP problems

FIGURE 11.7 Proving NP-completeness by reduction.
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for one NP-complete problem would mean that there is no qualitative difference
between the complexity of checking a proposed solution and finding it in polyno-
mial time for the vast majority of decision problems of all kinds. Such implications
make most computer scientists believe that P �= NP, although nobody has been
successful so far in finding a mathematical proof of this intriguing conjecture. Sur-
prisingly, in interviews with the authors of a book about the lives and discoveries
of 15 prominent computer scientists [Sha98], Cook seemed to be uncertain about
the eventual resolution of this dilemma whereas Levin contended that we should
expect the P = NP outcome.

Whatever the eventual answer to the P
?= NP question proves to be, knowing

that a problem is NP-complete has important practical implications for today. It
means that faced with a problem known to be NP-complete, we should probably
not aim at gaining fame and fortune3 by designing a polynomial-time algorithm
for solving all its instances. Rather, we should concentrate on several approaches
that seek to alleviate the intractability of such problems. These approaches are
outlined in the next chapter of the book.

Exercises 11.3

1. A game of chess can be posed as the following decision problem: given a
legal positioning of chess pieces and information about which side is to move,
determine whether that side can win. Is this decision problem decidable?

2. A certain problem can be solved by an algorithm whose running time is in
O(nlog2 n). Which of the following assertions is true?
a. The problem is tractable.

b. The problem is intractable.

c. Impossible to tell.

3. Give examples of the following graphs or explain why such examples cannot
exist.
a. graph with a Hamiltonian circuit but without an Eulerian circuit

b. graph with an Eulerian circuit but without a Hamiltonian circuit

c. graph with both a Hamiltonian circuit and an Eulerian circuit

d. graph with a cycle that includes all the vertices but with neither a Hamil-
tonian circuit nor an Eulerian circuit

3. In 2000, The Clay Mathematics Institute (CMI) of Cambridge, Massachusetts, designated a $1 million
prize for the solution to this problem.
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4. For each of the following graphs, find its chromatic number.

e b

d c

a a

b

c

f

g

d

e

h

ae

b f

c g

d h

a. b. c.

5. Design a polynomial-time algorithm for the graph 2-coloring problem: deter-
mine whether vertices of a given graph can be colored in no more than two
colors so that no two adjacent vertices are colored the same color.

6. Consider the following brute-force algorithm for solving the composite num-
ber problem: Check successive integers from 2 to �n/2� as possible divisors of
n. If one of them divides n evenly, return yes (i.e., the number is composite);
if none of them does, return no. Why does this algorithm not put the problem
in class P ?

7. State the decision version for each of the following problems and outline a
polynomial-time algorithm that verifies whether or not a proposed solution
solves the problem. (You may assume that a proposed solution represents a
legitimate input to your verification algorithm.)

a. knapsack problem b. bin packing problem

8. Show that the partition problem is polynomially reducible to the decision
version of the knapsack problem.

9. Show that the following three problems are polynomially reducible to each
other.

(i) Determine, for a given graph G = 〈V, E〉 and a positive integer m ≤ |V |,
whether G contains a clique of size m or more. (A clique of size k in a graph
is its complete subgraph of k vertices.)

(ii) Determine, for a given graph G = 〈V, E〉 and a positive integer m ≤ |V |,
whether there is a vertex cover of size m or less for G. (A vertex cover of size
k for a graph G = 〈V, E〉 is a subset V ′ ⊆ V such that |V ′| = k and, for each
edge (u, v) ∈ E, at least one of u and v belongs to V ′.)

(iii) Determine, for a given graph G = 〈V, E〉 and a positive integer m ≤ |V |,
whether G contains an independent set of size m or more. (An independent
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set of size k for a graph G = 〈V, E〉 is a subset V ′ ⊆ V such that |V ′| = k and
for all u, v ∈ V ′, vertices u and v are not adjacent in G.)

10. Determine whether the following problem is NP-complete. Given several
sequences of uppercase and lowercase letters, is it possible to select a letter
from each sequence without selecting both the upper- and lowercase versions
of any letter? For example, if the sequences are Abc, BC, aB, and ac, it is
possible to choose A from the first sequence, B from the second and third, and
c from the fourth. An example where there is no way to make the required
selections is given by the four sequences AB, Ab, aB, and ab. [Kar86]

11. Which of the following diagrams do not contradict the current state of our
knowledge about the complexity classes P, NP, and NPC (NP-complete
problems)?

a.

P = NP = NPC

b. P = NP

NPC

c.

NPC

NP

P

d.

NPC

NP

P

e.

NPC

NP

P

12. King Arthur expects 150 knights for an annual dinner at Camelot. Unfortu-
nately, some of the knights quarrel with each other, and Arthur knows who
quarrels with whom. Arthur wants to seat his guests around a table so that no
two quarreling knights sit next to each other.
a. Which standard problem can be used to model King Arthur’s task?

b. As a research project, find a proof that Arthur’s problem has a solution if
each knight does not quarrel with at least 75 other knights.
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11.4 Challenges of Numerical Algorithms

Numerical analysis is usually described as the branch of computer science con-
cerned with algorithms for solving mathematical problems. This description needs
an important clarification: the problems in question are problems of “continuous”
mathematics—solving equations and systems of equations, evaluating such func-
tions as sin x and ln x, computing integrals, and so on—as opposed to problems of
discrete mathematics dealing with such structures as graphs, trees, permutations,
and combinations. Our interest in efficient algorithms for mathematical problems
stems from the fact that these problems arise as models of many real-life phe-
nomena both in the natural world and in the social sciences. In fact, numerical
analysis used to be the main area of research, study, and application of computer
science. With the rapid proliferation of computers in business and everyday-life
applications, which deal primarily with storage and retrieval of information, the
relative importance of numerical analysis has shrunk in the last 30 years. However,
its applications, enhanced by the power of modern computers, continue to expand
in all areas of fundamental research and technology. Thus, wherever one’s inter-
ests lie in the wide world of modern computing, it is important to have at least
some understanding of the special challenges posed by continuous mathematical
problems.

We are not going to discuss the variety of difficulties posed by modeling, the
task of describing a real-life phenomenon in mathematical terms. Assuming that
this has already been done, what principal obstacles to solving a mathematical
problem do we face? The first major obstacle is the fact that most numerical analy-
sis problems cannot be solved exactly.4 They have to be solved approximately, and
this is usually done by replacing an infinite object by a finite approximation. For
example, the value of ex at a given point x can be computed by approximating
its infinite Taylor’s series about x = 0 by a finite sum of its first terms, called the
nth-degree Taylor polynomial:

ex ≈ 1 + x + x2

2!
+ . . . + xn

n!
. (11.6)

To give another example, the definite integral of a function can be approximated
by a finite weighted sum of its values, as in the composite trapezoidal rule that
you might remember from your calculus class:∫ b

a

f (x)dx ≈ h

2
[f (a) + 2

n−1∑
i=1

f (xi) + f (b)], (11.7)

where h = (b − a)/n, xi = a + ih for i = 0, 1, . . . , n (Figure 11.8).
The errors of such approximations are called truncation errors. One of the

major tasks in numerical analysis is to estimate the magnitudes of truncation

4. Solving a system of linear equations and polynomial evaluation, discussed in Sections 6.2 and 6.5,
respectively, are rare exceptions to this rule.
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x
b

hhhh
a x1 xi –1 xn –1xi +1xi

FIGURE 11.8 Composite trapezoidal rule.

errors. This is typically done by using calculus tools, from elementary to quite
advanced. For example, for approximation (11.6) we have

|ex − [1 + x + x2

2!
+ . . . + xn

n!
]| ≤ M

(n + 1)!
|x|n+1, (11.8)

where M = max eξ on the segment with the endpoints at 0 and x. This formula
makes it possible to determine the degree of Taylor’s polynomial needed to guar-
antee a predefined accuracy level of approximation (11.6).

For example, if we want to compute e0.5 by formula (11.6) and guarantee the
truncation error to be smaller than 10−4, we can proceed as follows. First, we
estimate M of formula (11.8):

M = max
0≤ξ≤0.5

eξ ≤ e0.5 < 2.

Using this bound and the desired accuracy level of 10−4, we obtain from (11.8)

M

(n + 1)!
|0.5|n+1 <

2
(n + 1)!

0.5n+1 < 10−4.

To solve the last inequality, we can compute the first few values of

2
(n + 1)!

0.5n+1 = 2−n

(n + 1)!

to see that the smallest value of n for which this inequality holds is 5.
Similarly, for approximation (11.7), the standard bound of the truncation error

is given by the inequality

|
∫ b

a

f (x)dx − h

2
[f (a) + 2

n−1∑
i=1

f (xi) + f (b)]| ≤ (b − a)h2

12
M2, (11.9)
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where M2 = max |f ′′(x)| on the interval a ≤ x ≤ b. You are asked to use this
inequality in the exercises for this section (Problems 5 and 6).

The other type of errors, called round-off errors, are caused by the limited
accuracy with which we can represent real numbers in a digital computer. These
errors arise not only for all irrational numbers (which, by definition, require an
infinite number of digits for their exact representation) but for many rational
numbers as well. In the overwhelming majority of situations, real numbers are
represented as floating-point numbers,

±.d1d2 . . . dp
. BE, (11.10)

where B is the number base, usually 2 or 16 (or, for unsophisticated calculators,
10); d1, d2, . . . , dp are digits (0 ≤ di < B for i = 1, 2, . . . , p and d1 > 0 unless the
number is 0) representing together the fractional part of the number and called
its mantissa; and E is an integer exponent with the range of values approximately
symmetric about 0.

The accuracy of the floating-point representation depends on the number
of significant digits p in representation (11.10). Most computers permit two or
even three levels of precision: single precision (typically equivalent to between
6 and 7 significant decimal digits), double precision (13 to 14 significant decimal
digits), and extended precision (19 to 20 significant decimal digits). Using higher-
precision arithmetic slows computations but may help to overcome some of the
problems caused by round-off errors. Higher precision may need to be used only
for a particular step of the algorithm in question.

As with an approximation of any kind, it is important to distinguish between
the absolute error and the relative error of representing a number α∗ by its
approximation α:

absolute error = |α − α∗|, (11.11)

relative error = |α − α∗|
|α∗| . (11.12)

(The relative error is undefined if α∗ = 0.)
Very large and very small numbers cannot be represented in floating-point

arithmetic because of the phenomena called overflow and underflow, respec-
tively. An overflow happens when an arithmetic operation yields a result out-
side the range of the computer’s floating-point numbers. Typical examples of
overflow arise from the multiplication of large numbers or division by a very
small number. Sometimes we can eliminate this problem by making a simple
change in the order in which an expression is evaluated (e.g., (1029 . 1130)/1230 =
1029 . (11/12)30), by replacing an expression with an equal one (e.g., computing(100

2

)
not as 100!/(2!(100 − 2)!) but as (100 . 99)/2), or by computing a logarithm

of an expression instead of the expression itself.
Underflow occurs when the result of an operation is a nonzero fraction of

such a small magnitude that it cannot be represented as a nonzero floating-point
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number. Usually, underflow numbers are replaced by zero, but a special signal is
generated by hardware to indicate such an event has occurred.

It is important to remember that, in addition to inaccurate representation
of numbers, the arithmetic operations performed in a computer are not always
exact, either. In particular, subtracting two nearly equal floating-point numbers
may cause a large increase in relative error. This phenomenon is called subtractive
cancellation.

EXAMPLE 1 Consider two irrational numbers

α∗ = π = 3.14159265 . . . and β∗ = π − 6 . 10−7 = 3.14159205 . . .

represented by floating-point numbers α = 0.3141593 . 101 and β = 0.3141592 .

101, respectively. The relative errors of these approximations are small:

|α − α∗|
α∗ = 0.0000003 . . .

π
<

4
3

10−7

and

|β − β∗|
β∗ = 0.00000005 . . .

π − 6 . 10−7
<

1
3

10−7,

respectively. The relative error of representing the difference γ ∗ = α∗ − β∗ by the
difference of the floating-point representations γ = α − β is

|γ − γ ∗|
γ ∗ = 10−6 − 6 . 10−7

6 . 10−7
= 2

3
,

which is very large for a relative error despite quite accurate approximations for
both α and β.

Note that we may get a significant magnification of round-off error if a low-
accuracy difference is used as a divisor. (We already encountered this problem
in discussing Gaussian elimination in Section 6.2. Our solution there was to use
partial pivoting.) Many numerical algorithms involve thousands or even millions
of arithmetic operations for typical inputs. For such algorithms, the propagation of
round-off errors becomes a major concern from both the practical and theoretical
standpoints. For some algorithms, round-off errors can propagate through the
algorithm’s operations with increasing effect. This highly undesirable property
of a numerical algorithm is called instability. Some problems exhibit such a high
level of sensitivity to changes in their input that it is all but impossible to design a
stable algorithm to solve them. Such problems are called ill-conditioned .

EXAMPLE 2 Consider the following system of two linear equations in two
unknowns:

1.001x + 0.999y = 2

0.999x + 1.001y = 2.
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Its only solution is x = 1, y = 1. To see how sensitive this system is to small changes
to its right-hand side, consider the system with the same coefficient matrix but
slightly different right-hand side values:

1.001x + 0.999y = 2.002

0.999x + 1.001y = 1.998.

The only solution to this system is x = 2, y = 0, which is quite far from the solution
to the previous system. Note that the coefficient matrix of this system is close to
being singular (why?). Hence, a minor change in its coefficients may yield a system
with either no solutions or infinitely many solutions, depending on its right-hand-
side values. You can find a more formal and detailed discussion of how we can
measure the degree of ill-condition of the coefficient matrix in numerical analysis
textbooks (e.g., [Ger03]).

We conclude with a well-known problem of finding real roots of the quadratic
equation

ax2 + bx + c = 0 (11.13)

for any real coefficients a, b, and c (a �= 0). According to secondary-school algebra,
equation (11.13) has real roots if and only if its discriminant D = b2 − 4ac is
nonnegative, and these roots can be found by the following formula

x1,2 = −b ±
√

b2 − 4ac

2a
. (11.14)

Although formula (11.14) provides a complete solution to the posed problem
as far as a mathematician is concerned, it is far from being a complete solution for
an algorithm designer. The first major obstacle is evaluating the square root. Even
for most positive integers D,

√
D is an irrational number that can be computed

only approximately. There is a method of computing square roots that is much
better than the one commonly taught in secondary school. (It follows from New-
ton’s method , a very important algorithm for solving equations, which we discuss
in Section 12.4.) This method generates the sequence {xn} of approximations to√

D, where D is a given nonnegative number, according to the formula

xn+1 = 1
2
(xn + D

xn

) for n = 0, 1, . . . , (11.15)

where the initial approximation x0 can be chosen, among other possibilities, as
x0 = (1 + D)/2. It is not difficult to prove that sequence (11.15) is decreasing (if
D �= 1) and always converges to

√
D. We can stop generating its elements either

when the difference between its two consecutive elements is less than a predefined
error tolerance ε > 0

xn − xn+1 < ε
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or when x2
n+1 is sufficiently close to D. Approximation sequence (11.15) converges

very fast to
√

D for most values of D. In particular, one can prove that if 0.25 ≤
D < 1, then no more than four iterations are needed to guarantee that

|xn − √
D| < 4 . 10−15,

and we can always scale a given value of d to one in the interval [0.25, 1) by the
formula d = D2p, where p is an even integer.

EXAMPLE 3 Let us apply Newton’s algorithm to compute
√

2. (For simplicity,
we ignore scaling.) We will round off the numbers to six decimal places and use
the standard numerical analysis notation .= to indicate the round-offs.

x0 = 1
2
(1 + 2) = 1.500000,

x1 = 1
2
(x0 + 2

x0
)

.= 1.416667,

x2 = 1
2
(x1 + 2

x1
)

.= 1.414216,

x3 = 1
2
(x2 + 2

x2
)

.= 1.414214,

x4 = 1
2
(x3 + 2

x3
)

.= 1.414214.

At this point we have to stop because x4 = x3
.= 1.414214 and hence all other

approximations will be the same. The exact value of
√

2 is 1.41421356 . . . .

With the issue of computing square roots squared away (I do not know
whether or not the pun was intended), are we home free to write a program based
on formula (11.14)? The answer is no because of the possible impact of round-off
errors. Among other obstacles, we are faced here with the menace of subtractive
cancellation. If b2 is much larger than 4ac,

√
b2 − 4ac will be very close to |b|, and

a root computed by formula (11.14) might have a large relative error.

EXAMPLE 4 Let us follow a paper by George Forsythe5 [For69] and consider
the equation

x2 − 105x + 1 = 0.

Its true roots to 11 significant digits are

x∗
1

.= 99999.999990

5. George E. Forsythe (1917–1972), a noted numerical analyst, played a leading role in establishing
computer science as a separate academic discipline in the United States. It is his words that are used
as the epigraph to this book’s preface.
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and

x∗
2

.= 0.000010000000001.

If we use formula (11.14) and perform all the computations in decimal floating-
point arithmetic with, say, seven significant digits, we obtain

(−b)2 = 0.1000000 . 1011,

4ac = 0.4000000 . 101,

D
.= 0.1000000 . 1011,√

D
.= 0.1000000 . 106,

x1
.= −b + √

D

2a

.= 0.1000000 . 106,

x2
.= −b − √

D

2a

.= 0.

And although the relative error of approximating x∗
1 by x1 is very small, for the

second root it is very large:

|x2 − x∗
2 |

x∗
2

= 1 (i.e., 100%)

To avoid the possibility of subtractive cancellation in formula (11.14), we can
use instead another formula, obtained as follows:

x1 = −b +
√

b2 − 4ac

2a

= (−b +
√

b2 − 4ac)(−b −
√

b2 − 4ac)

2a(−b −
√

b2 − 4ac)

= 2c

−b −
√

b2 − 4ac
,

with no danger of subtractive cancellation in the denominator if b > 0. As to x2,

it can be computed by the standard formula

x2 = −b −
√

b2 − 4ac

2a
,

with no danger of cancellation either for a positive value of b.
The case of b < 0 is symmetric: we can use the formulas

x1 = −b +
√

b2 − 4ac

2a
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and

x2 = 2c

−b +
√

b2 − 4ac
.

(The case of b = 0 can be considered with either of the other two cases.)
There are several other obstacles to applying formula (11.14), which are re-

lated to limitations of floating-point arithmetic: if a is very small, division by a

can cause an overflow; there seems to be no way to fight the danger of subtractive
cancellation in computing b2 − 4ac other than calculating it with double precision;
and so on. These problems have been overcome by William Kahan of the Univer-
sity of Toronto (see [For69]), and his algorithm is considered to be a significant
achievement in the history of numerical analysis.

Hopefully, this brief overview has piqued your interest enough for you to seek
more information in the many books devoted exclusively to numerical algorithms.
In this book, we discuss one more topic in the next chapter: three classic methods
for solving equations in one unknown.

Exercises 11.4

1. Some textbooks define the number of significant digits in the approximation
of number α∗ by number α as the largest nonnegative integer k for which

|α − α∗|
|α∗| < 5 . 10−k.

According to this definition, how many significant digits are there in the
approximation of π by

a. 3.1415? b. 3.1417?

2. If α = 1.5 is known to approximate some number α∗ with the absolute error
not exceeding 10−2, find
a. the range of possible values of α∗.
b. the range of the relative errors of these approximations.

3. Find the approximate value of
√

e = 1.648721 . . . obtained by the fifth-degree
Taylor’s polynomial about 0 and compute the truncation error of this approx-
imation. Does the result agree with the theoretical prediction made in the
section?

4. Derive formula (11.7) of the composite trapezoidal rule.

5. Use the composite trapezoidal rule with n = 4 to approximate the following
definite integrals. Find the truncation error of each approximation and com-
pare it with the one given by formula (11.9).

a.
∫ 1

0 x2dx b.
∫ 3

1 x−1dx
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6. If
∫ 1

0 esin xdx is to be computed by the composite trapezoidal rule, how large
should the number of subintervals be to guarantee a truncation error smaller
than 10−4? Smaller than 10−6?

7. Solve the two systems of linear equations and indicate whether they are ill-
conditioned.

a. 2x + 5y = 7
2x + 5.000001y = 7.000001 b. 2x + 5y = 7

2x + 4.999999y = 7.000002
8. Write a computer program to solve the equation ax2 + bx + c = 0.

9. a. Prove that for any nonnegative number D, the sequence of Newton’s
method for computing

√
D is strictly decreasing and converges to

√
D for

any value of the initial approximation x0 >
√

D.

b. Prove that if 0.25 ≤ D < 1 and x0 = (1 + D)/2, no more than four iterations
of Newton’s method are needed to guarantee that

|xn − √
D| < 4 . 10−15.

10. Apply four iterations of Newton’s method to compute
√

3 and estimate the
absolute and relative errors of this approximation.

SUMMARY

Given a class of algorithms for solving a particular problem, a lower bound
indicates the best possible efficiency any algorithm from this class can have.

A trivial lower bound is based on counting the number of items in the
problem’s input that must be processed and the number of output items
that need to be produced.

An information-theoretic lower bound is usually obtained through a mecha-
nism of decision trees. This technique is particularly useful for comparison-
based algorithms for sorting and searching. Specifically:

Any general comparison-based sorting algorithm must perform at least
�log2 n!� ≈ n log2 n key comparisons in the worst case.
Any general comparison-based algorithm for searching a sorted array
must perform at least �log2(n + 1)� key comparisons in the worst case.

The adversary method for establishing lower bounds is based on following
the logic of a malevolent adversary who forces the algorithm into the most
time-consuming path.

A lower bound can also be established by reduction, i.e., by reducing a
problem with a known lower bound to the problem in question.

Complexity theory seeks to classify problems according to their computational
complexity. The principal split is between tractable and intractable problems—
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problems that can and cannot be solved in polynomial time, respectively.
For purely technical reasons, complexity theory concentrates on decision
problems, which are problems with yes/no answers.

The halting problem is an example of an undecidable decision problem; i.e.,
it cannot be solved by any algorithm.

P is the class of all decision problems that can be solved in polynomial time.
NP is the class of all decision problems whose randomly guessed solutions
can be verified in polynomial time.

Many important problems in NP (such as the Hamiltonian circuit problem)
are known to be NP-complete: all other problems in NP are reducible to such
a problem in polynomial time. The first proof of a problem’s NP-completeness
was published by S. Cook for the CNF-satisfiability problem.

It is not known whether P = NP or P is just a proper subset of NP. This
question is the most important unresolved issue in theoretical computer
science. A discovery of a polynomial-time algorithm for any of the thousands
of known NP-complete problems would imply that P = NP.

Numerical analysis is a branch of computer science dealing with solving
continuous mathematical problems. Two types of errors occur in solving a
majority of such problems: truncation error and round-off error. Truncation
errors stem from replacing infinite objects by their finite approximations.
Round-off errors are due to inaccuracies of representing numbers in a digital
computer.

Subtractive cancellation happens as a result of subtracting two near-equal
floating-point numbers. It may lead to a sharp increase in the relative round-
off error and therefore should be avoided (by either changing the expression’s
form or by using a higher precision in computing such a difference).

Writing a general computer program for solving quadratic equations ax2 +
bx + c = 0 is a difficult task. The problem of computing square roots can be
solved by utilizing Newton’s method; the problem of subtractive cancellation
can be dealt with by using different formulas depending on whether coefficient
b is positive or negative and by computing the discriminant b2 − 4ac with
double precision.
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12
Coping with the Limitations
of Algorithm Power

Keep on the lookout for novel ideas that others have used successfully.
Your idea has to be original only in its adaptation to the problem you’re
working on.

—Thomas Edison (1847–1931)

As we saw in the previous chapter, there are problems that are difficult to
solve algorithmically. At the same time, some of them are so important that

we cannot just sigh in resignation and do nothing. This chapter outlines several
ways of dealing with such difficult problems.

Sections 12.1 and 12.2 introduce two algorithm design techniques—back-
tracking and branch-and-bound—that often make it possible to solve at least
some large instances of difficult combinatorial problems. Both strategies can be
considered an improvement over exhaustive search, discussed in Section 3.4.
Unlike exhaustive search, they construct candidate solutions one component at a
time and evaluate the partially constructed solutions: if no potential values of the
remaining components can lead to a solution, the remaining components are not
generated at all. This approach makes it possible to solve some large instances of
difficult combinatorial problems, though, in the worst case, we still face the same
curse of exponential explosion encountered in exhaustive search.

Both backtracking and branch-and-bound are based on the construction of a
state-space tree whose nodes reflect specific choices made for a solution’s compo-
nents. Both techniques terminate a node as soon as it can be guaranteed that no
solution to the problem can be obtained by considering choices that correspond
to the node’s descendants. The techniques differ in the nature of problems they
can be applied to. Branch-and-bound is applicable only to optimization problems
because it is based on computing a bound on possible values of the problem’s
objective function. Backtracking is not constrained by this demand, but more
often than not, it applies to nonoptimization problems. The other distinction be-
tween backtracking and branch-and-bound lies in the order in which nodes of the

423
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state-space tree are generated. For backtracking, this tree is usually developed
depth-first (i.e., similar to DFS). Branch-and-bound can generate nodes accord-
ing to several rules: the most natural one is the so-called best-first rule explained
in Section 12.2.

Section 12.3 takes a break from the idea of solving a problem exactly. The
algorithms presented there solve problems approximately but fast. Specifically,
we consider a few approximation algorithms for the traveling salesman and knap-
sack problems. For the traveling salesman problem, we discuss basic theoretical
results and pertinent empirical data for several well-known approximation algo-
rithms. For the knapsack problem, we first introduce a greedy algorithm and then
a parametric family of polynomial-time algorithms that yield arbitrarily good ap-
proximations.

Section 12.4 is devoted to algorithms for solving nonlinear equations. After a
brief discussion of this very important problem, we examine three classic methods
for approximate root finding: the bisection method, the method of false position,
and Newton’s method.

12.1 Backtracking

Throughout the book (see in particular Sections 3.4 and 11.3), we have encoun-
tered problems that require finding an element with a special property in a domain
that grows exponentially fast (or faster) with the size of the problem’s input: a
Hamiltonian circuit among all permutations of a graph’s vertices, the most valu-
able subset of items for an instance of the knapsack problem, and the like. We
addressed in Section 11.3 the reasons for believing that many such problems might
not be solvable in polynomial time. Also recall that we discussed in Section 3.4
how such problems can be solved, at least in principle, by exhaustive search. The
exhaustive-search technique suggests generating all candidate solutions and then
identifying the one (or the ones) with a desired property.

Backtracking is a more intelligent variation of this approach. The principal
idea is to construct solutions one component at a time and evaluate such partially
constructed candidates as follows. If a partially constructed solution can be de-
veloped further without violating the problem’s constraints, it is done by taking
the first remaining legitimate option for the next component. If there is no legiti-
mate option for the next component, no alternatives for any remaining component
need to be considered. In this case, the algorithm backtracks to replace the last
component of the partially constructed solution with its next option.

It is convenient to implement this kind of processing by constructing a tree
of choices being made, called the state-space tree. Its root represents an initial
state before the search for a solution begins. The nodes of the first level in the
tree represent the choices made for the first component of a solution, the nodes
of the second level represent the choices for the second component, and so
on. A node in a state-space tree is said to be promising if it corresponds to a
partially constructed solution that may still lead to a complete solution; otherwise,
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it is called nonpromising. Leaves represent either nonpromising dead ends or
complete solutions found by the algorithm. In the majority of cases, a state-
space tree for a backtracking algorithm is constructed in the manner of depth-
first search. If the current node is promising, its child is generated by adding the
first remaining legitimate option for the next component of a solution, and the
processing moves to this child. If the current node turns out to be nonpromising,
the algorithm backtracks to the node’s parent to consider the next possible option
for its last component; if there is no such option, it backtracks one more level up
the tree, and so on. Finally, if the algorithm reaches a complete solution to the
problem, it either stops (if just one solution is required) or continues searching
for other possible solutions.

n-Queens Problem

As our first example, we use a perennial favorite of textbook writers: the n-queens
problem. The problem is to place n queens on an n × n chessboard so that no two
queens attack each other by being in the same row or in the same column or on
the same diagonal. For n = 1, the problem has a trivial solution, and it is easy to
see that there is no solution for n = 2 and n = 3. So let us consider the four-queens
problem and solve it by the backtracking technique. Since each of the four queens
has to be placed in its own row, all we need to do is to assign a column for each
queen on the board presented in Figure 12.1.

We start with the empty board and then place queen 1 in the first possible
position of its row, which is in column 1 of row 1. Then we place queen 2, after
trying unsuccessfully columns 1 and 2, in the first acceptable position for it, which
is square (2, 3), the square in row 2 and column 3. This proves to be a dead end
because there is no acceptable position for queen 3. So, the algorithm backtracks
and puts queen 2 in the next possible position at (2, 4). Then queen 3 is placed
at (3, 2), which proves to be another dead end. The algorithm then backtracks all
the way to queen 1 and moves it to (1, 2). Queen 2 then goes to (2, 4), queen 3 to
(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-space
tree of this search is shown in Figure 12.2.

If other solutions need to be found (how many of them are there for the four-
queens problem?), the algorithm can simply resume its operations at the leaf at
which it stopped. Alternatively, we can use the board’s symmetry for this purpose.

queen 1

queen 2

queen 3

queen 4

1

1

2

2

3

3

4

4

FIGURE 12.1 Board for the four-queens problem.
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FIGURE 12.2 State-space tree of solving the four-queens problem by backtracking.
× denotes an unsuccessful attempt to place a queen in the indicated
column. The numbers above the nodes indicate the order in which the
nodes are generated.

Finally, it should be pointed out that a single solution to the n-queens problem
for any n ≥ 4 can be found in linear time. In fact, over the last 150 years mathe-
maticians have discovered several alternative formulas for nonattacking positions
of n queens [Bel09]. Such positions can also be found by applying some general
algorithm design strategies (Problem 4 in this section’s exercises).

Hamiltonian Circuit Problem

As our next example, let us consider the problem of finding a Hamiltonian circuit
in the graph in Figure 12.3a.

Without loss of generality, we can assume that if a Hamiltonian circuit exists,
it starts at vertex a. Accordingly, we make vertex a the root of the state-space
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FIGURE 12.3 (a) Graph. (b) State-space tree for finding a Hamiltonian circuit. The
numbers above the nodes of the tree indicate the order in which the
nodes are generated.

tree (Figure 12.3b). The first component of our future solution, if it exists, is a
first intermediate vertex of a Hamiltonian circuit to be constructed. Using the
alphabet order to break the three-way tie among the vertices adjacent to a, we
select vertex b. From b, the algorithm proceeds to c, then to d, then to e, and
finally to f, which proves to be a dead end. So the algorithm backtracks from f

to e, then to d, and then to c, which provides the first alternative for the algorithm
to pursue. Going from c to e eventually proves useless, and the algorithm has to
backtrack from e to c and then to b. From there, it goes to the vertices f , e, c, and
d , from which it can legitimately return to a, yielding the Hamiltonian circuit a, b,
f , e, c, d , a. If we wanted to find another Hamiltonian circuit, we could continue
this process by backtracking from the leaf of the solution found.

Subset-Sum Problem

As our last example, we consider the subset-sum problem: find a subset of a given
set A = {a1, . . . , an} of n positive integers whose sum is equal to a given positive
integer d. For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions:
{1, 2, 6} and {1, 8}. Of course, some instances of this problem may have no
solutions.

It is convenient to sort the set’s elements in increasing order. So, we will
assume that

a1 < a2 < . . . < an.
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FIGURE 12.4 Complete state-space tree of the backtracking algorithm applied to the
instance A = {3, 5, 6, 7} and d = 15 of the subset-sum problem. The
number inside a node is the sum of the elements already included in the
subsets represented by the node. The inequality below a leaf indicates
the reason for its termination.

The state-space tree can be constructed as a binary tree like that in Figure 12.4 for
the instance A = {3, 5, 6, 7} and d = 15. The root of the tree represents the starting
point, with no decisions about the given elements made as yet. Its left and right
children represent, respectively, inclusion and exclusion of a1 in a set being sought.
Similarly, going to the left from a node of the first level corresponds to inclusion
of a2 while going to the right corresponds to its exclusion, and so on. Thus, a path
from the root to a node on the ith level of the tree indicates which of the first i

numbers have been included in the subsets represented by that node.
We record the value of s, the sum of these numbers, in the node. If s is equal

to d , we have a solution to the problem. We can either report this result and stop
or, if all the solutions need to be found, continue by backtracking to the node’s
parent. If s is not equal to d, we can terminate the node as nonpromising if either
of the following two inequalities holds:

s + ai+1 > d (the sum s is too large),

s +
n∑

j=i+1

aj < d (the sum s is too small).

General Remarks

From a more general perspective, most backtracking algorithms fit the follow-
ing description. An output of a backtracking algorithm can be thought of as an
n-tuple (x1, x2, . . . , xn) where each coordinate xi is an element of some finite lin-
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early ordered set Si. For example, for the n-queens problem, each Si is the set
of integers (column numbers) 1 through n. The tuple may need to satisfy some
additional constraints (e.g., the nonattacking requirements in the n-queens prob-
lem). Depending on the problem, all solution tuples can be of the same length
(the n-queens and the Hamiltonian circuit problem) and of different lengths (the
subset-sum problem). A backtracking algorithm generates, explicitly or implic-
itly, a state-space tree; its nodes represent partially constructed tuples with the
first i coordinates defined by the earlier actions of the algorithm. If such a tuple
(x1, x2, . . . , xi) is not a solution, the algorithm finds the next element in Si+1 that
is consistent with the values of (x1, x2, . . . , xi) and the problem’s constraints, and
adds it to the tuple as its (i + 1)st coordinate. If such an element does not exist,
the algorithm backtracks to consider the next value of xi, and so on.

To start a backtracking algorithm, the following pseudocode can be called for
i = 0 ; X[1..0] represents the empty tuple.

ALGORITHM Backtrack(X[1..i])

//Gives a template of a generic backtracking algorithm
//Input: X[1..i] specifies first i promising components of a solution
//Output: All the tuples representing the problem’s solutions
if X[1..i] is a solution write X[1..i]
else //see Problem 9 in this section’s exercises

for each element x ∈ Si+1 consistent with X[1..i] and the constraints do
X[i + 1] ← x

Backtrack(X[1..i + 1])

Our success in solving small instances of three difficult problems earlier in
this section should not lead you to the false conclusion that backtracking is a
very efficient technique. In the worst case, it may have to generate all possible
candidates in an exponentially (or faster) growing state space of the problem at
hand. The hope, of course, is that a backtracking algorithm will be able to prune
enough branches of its state-space tree before running out of time or memory or
both. The success of this strategy is known to vary widely, not only from problem
to problem but also from one instance to another of the same problem.

There are several tricks that might help reduce the size of a state-space tree.
One is to exploit the symmetry often present in combinatorial problems. For
example, the board of the n-queens problem has several symmetries so that some
solutions can be obtained from others by reflection or rotation. This implies, in
particular, that we need not consider placements of the first queen in the last �n/2�
columns, because any solution with the first queen in square (1, i), �n/2� ≤ i ≤ n,

can be obtained by reflection (which?) from a solution with the first queen in
square (1, n − i + 1). This observation cuts the size of the tree by about half.
Another trick is to preassign values to one or more components of a solution,
as we did in the Hamiltonian circuit example. Data presorting in the subset-sum
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example demonstrates potential benefits of yet another opportunity: rearrange
data of an instance given.

It would be highly desirable to be able to estimate the size of the state-space
tree of a backtracking algorithm. As a rule, this is too difficult to do analytically,
however. Knuth [Knu75] suggested generating a random path from the root to
a leaf and using the information about the number of choices available during
the path generation for estimating the size of the tree. Specifically, let c1 be the
number of values of the first component x1 that are consistent with the problem’s
constraints. We randomly select one of these values (with equal probability 1/c1)
to move to one of the root’s c1 children. Repeating this operation for c2 possible
values for x2 that are consistent with x1 and the other constraints, we move to one
of the c2 children of that node. We continue this process until a leaf is reached
after randomly selecting values for x1, x2, . . . , xn. By assuming that the nodes on
level i have ci children on average, we estimate the number of nodes in the tree as

1 + c1 + c1c2 + . . . + c1c2 . . . cn.

Generating several such estimates and computing their average yields a useful
estimation of the actual size of the tree, although the standard deviation of this
random variable can be large.

In conclusion, three things on behalf of backtracking need to be said. First, it
is typically applied to difficult combinatorial problems for which no efficient algo-
rithms for finding exact solutions possibly exist. Second, unlike the exhaustive-
search approach, which is doomed to be extremely slow for all instances of a
problem, backtracking at least holds a hope for solving some instances of nontriv-
ial sizes in an acceptable amount of time. This is especially true for optimization
problems, for which the idea of backtracking can be further enhanced by evaluat-
ing the quality of partially constructed solutions. How this can be done is explained
in the next section. Third, even if backtracking does not eliminate any elements
of a problem’s state space and ends up generating all its elements, it provides a
specific technique for doing so, which can be of value in its own right.

Exercises 12.1

1. a. Continue the backtracking search for a solution to the four-queens prob-
lem, which was started in this section, to find the second solution to the
problem.

b. Explain how the board’s symmetry can be used to find the second solution
to the four-queens problem.

2. a. Which is the last solution to the five-queens problem found by the back-
tracking algorithm?

b. Use the board’s symmetry to find at least four other solutions to the
problem.
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3. a. Implement the backtracking algorithm for the n-queens problem in the lan-
guage of your choice. Run your program for a sample of n values to get the
numbers of nodes in the algorithm’s state-space trees. Compare these num-
bers with the numbers of candidate solutions generated by the exhaustive-
search algorithm for this problem (see Problem 9 in Exercises 3.4).

b. For each value of n for which you run your program in part (a), estimate
the size of the state-space tree by the method described in Section 12.1 and
compare the estimate with the actual number of nodes you obtained.

4. Design a linear-time algorithm that finds a solution to the n-queens problem
for any n ≥ 4.

5. Apply backtracking to the problem of finding a Hamiltonian circuit in the
following graph.

a

f

b

g

ec d

6. Apply backtracking to solve the 3-coloring problem for the graph in Fig-
ure 12.3a.

7. Generate all permutations of {1, 2, 3, 4} by backtracking.

8. a. Apply backtracking to solve the following instance of the subset sum
problem: A = {1, 3, 4, 5} and d = 11.

b. Will the backtracking algorithm work correctly if we use just one of the
two inequalities to terminate a node as nonpromising?

9. The general template for backtracking algorithms, which is given in the sec-
tion, works correctly only if no solution is a prefix to another solution to the
problem. Change the template’s pseudocode to work correctly without this
restriction.

10. Write a program implementing a backtracking algorithm for
a. the Hamiltonian circuit problem.

b. the m-coloring problem.

11. Puzzle pegs This puzzle-like game is played on a board with 15 small holes
arranged in an equilateral triangle. In an initial position, all but one of the
holes are occupied by pegs, as in the example shown below. A legal move is
a jump of a peg over its immediate neighbor into an empty square opposite;
the jump removes the jumped-over neighbor from the board.
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Design and implement a backtracking algorithm for solving the following
versions of this puzzle.
a. Starting with a given location of the empty hole, find a shortest sequence

of moves that eliminates 14 pegs with no limitations on the final position
of the remaining peg.

b. Starting with a given location of the empty hole, find a shortest sequence
of moves that eliminates 14 pegs with the remaining peg at the empty hole
of the initial board.

12.2 Branch-and-Bound

Recall that the central idea of backtracking, discussed in the previous section, is to
cut off a branch of the problem’s state-space tree as soon as we can deduce that it
cannot lead to a solution. This idea can be strengthened further if we deal with an
optimization problem. An optimization problem seeks to minimize or maximize
some objective function (a tour length, the value of items selected, the cost of
an assignment, and the like), usually subject to some constraints. Note that in
the standard terminology of optimization problems, a feasible solution is a point
in the problem’s search space that satisfies all the problem’s constraints (e.g., a
Hamiltonian circuit in the traveling salesman problem or a subset of items whose
total weight does not exceed the knapsack’s capacity in the knapsack problem),
whereas an optimal solution is a feasible solution with the best value of the
objective function (e.g., the shortest Hamiltonian circuit or the most valuable
subset of items that fit the knapsack).

Compared to backtracking, branch-and-bound requires two additional items:

a way to provide, for every node of a state-space tree, a bound on the best
value of the objective function1 on any solution that can be obtained by adding
further components to the partially constructed solution represented by the
node
the value of the best solution seen so far

If this information is available, we can compare a node’s bound value with
the value of the best solution seen so far. If the bound value is not better than the
value of the best solution seen so far—i.e., not smaller for a minimization problem

1. This bound should be a lower bound for a minimization problem and an upper bound for a maximiza-
tion problem.
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and not larger for a maximization problem—the node is nonpromising and can
be terminated (some people say the branch is “pruned”). Indeed, no solution
obtained from it can yield a better solution than the one already available. This is
the principal idea of the branch-and-bound technique.

In general, we terminate a search path at the current node in a state-space
tree of a branch-and-bound algorithm for any one of the following three reasons:

The value of the node’s bound is not better than the value of the best solution
seen so far.
The node represents no feasible solutions because the constraints of the
problem are already violated.
The subset of feasible solutions represented by the node consists of a single
point (and hence no further choices can be made)—in this case, we compare
the value of the objective function for this feasible solution with that of the
best solution seen so far and update the latter with the former if the new
solution is better.

Assignment Problem

Let us illustrate the branch-and-bound approach by applying it to the problem of
assigning n people to n jobs so that the total cost of the assignment is as small
as possible. We introduced this problem in Section 3.4, where we solved it by
exhaustive search. Recall that an instance of the assignment problem is specified
by an n × n cost matrix C so that we can state the problem as follows: select one
element in each row of the matrix so that no two selected elements are in the
same column and their sum is the smallest possible. We will demonstrate how this
problem can be solved using the branch-and-bound technique by considering the
same small instance of the problem that we investigated in Section 3.4:

job 1 job 2 job 3 job 4

C =

⎡
⎢⎢⎣

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

⎤
⎥⎥⎦

person a

person b

person c

person d

How can we find a lower bound on the cost of an optimal selection without
actually solving the problem? We can do this by several methods. For example, it
is clear that the cost of any solution, including an optimal one, cannot be smaller
than the sum of the smallest elements in each of the matrix’s rows. For the instance
here, this sum is 2 + 3 + 1 + 4 = 10. It is important to stress that this is not the cost
of any legitimate selection (3 and 1 came from the same column of the matrix);
it is just a lower bound on the cost of any legitimate selection. We can and will
apply the same thinking to partially constructed solutions. For example, for any
legitimate selection that selects 9 from the first row, the lower bound will be
9 + 3 + 1 + 4 = 17.

One more comment is in order before we embark on constructing the prob-
lem’s state-space tree. It deals with the order in which the tree nodes will be
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generated. Rather than generating a single child of the last promising node as
we did in backtracking, we will generate all the children of the most promising
node among nonterminated leaves in the current tree. (Nonterminated, i.e., still
promising, leaves are also called live.) How can we tell which of the nodes is most
promising? We can do this by comparing the lower bounds of the live nodes. It
is sensible to consider a node with the best bound as most promising, although
this does not, of course, preclude the possibility that an optimal solution will ul-
timately belong to a different branch of the state-space tree. This variation of the
strategy is called the best-first branch-and-bound .

So, returning to the instance of the assignment problem given earlier, we start
with the root that corresponds to no elements selected from the cost matrix. As
we already discussed, the lower-bound value for the root, denoted lb, is 10. The
nodes on the first level of the tree correspond to selections of an element in the
first row of the matrix, i.e., a job for person a (Figure 12.5).

So we have four live leaves—nodes 1 through 4—that may contain an optimal
solution. The most promising of them is node 2 because it has the smallest lower-
bound value. Following our best-first search strategy, we branch out from that
node first by considering the three different ways of selecting an element from the
second row and not in the second column—the three different jobs that can be
assigned to person b (Figure 12.6).

Of the six live leaves—nodes 1, 3, 4, 5, 6, and 7—that may contain an optimal
solution, we again choose the one with the smallest lower bound, node 5. First, we
consider selecting the third column’s element from c’s row (i.e., assigning person c

to job 3); this leaves us with no choice but to select the element from the fourth
column of d’s row (assigning person d to job 4). This yields leaf 8 (Figure 12.7),
which corresponds to the feasible solution {a → 2, b → 1, c → 3, d → 4} with the
total cost of 13. Its sibling, node 9, corresponds to the feasible solution {a → 2,

b → 1, c → 4, d → 3} with the total cost of 25. Since its cost is larger than the cost
of the solution represented by leaf 8, node 9 is simply terminated. (Of course, if

0
start

1 2 3 4

lb = 2+3+1+4 =10

lb = 8+3 +1+ 6 =18lb =7+4+5+ 4 =20lb = 2+3+1+4 =10lb = 9+3+1+4 =17

a ⎯→ 2a ⎯→ 1 a ⎯→ 3 a ⎯→ 4

FIGURE 12.5 Levels 0 and 1 of the state-space tree for the instance of the assignment
problem being solved with the best-first branch-and-bound algorithm. The
number above a node shows the order in which the node was generated.
A node’s fields indicate the job number assigned to person a and the
lower bound value, lb, for this node.
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FIGURE 12.6 Levels 0, 1, and 2 of the state-space tree for the instance of the assignment
problem being solved with the best-first branch-and-bound algorithm.
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FIGURE 12.7 Complete state-space tree for the instance of the assignment problem
solved with the best-first branch-and-bound algorithm.

its cost were smaller than 13, we would have to replace the information about the
best solution seen so far with the data provided by this node.)

Now, as we inspect each of the live leaves of the last state-space tree—nodes
1, 3, 4, 6, and 7 in Figure 12.7—we discover that their lower-bound values are
not smaller than 13, the value of the best selection seen so far (leaf 8). Hence,
we terminate all of them and recognize the solution represented by leaf 8 as the
optimal solution to the problem.
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Before we leave the assignment problem, we have to remind ourselves again
that, unlike for our next examples, there is a polynomial-time algorithm for this
problem called the Hungarian method (e.g., [Pap82]). In the light of this efficient
algorithm, solving the assignment problem by branch-and-bound should be con-
sidered a convenient educational device rather than a practical recommendation.

Knapsack Problem

Let us now discuss how we can apply the branch-and-bound technique to solving
the knapsack problem. This problem was introduced in Section 3.4: given n items
of known weights wi and values vi, i = 1, 2, . . . , n, and a knapsack of capacity W ,
find the most valuable subset of the items that fit in the knapsack. It is convenient
to order the items of a given instance in descending order by their value-to-weight
ratios. Then the first item gives the best payoff per weight unit and the last one
gives the worst payoff per weight unit, with ties resolved arbitrarily:

v1/w1 ≥ v2/w2 ≥ . . . ≥ vn/wn.

It is natural to structure the state-space tree for this problem as a binary tree
constructed as follows (see Figure 12.8 for an example). Each node on the ith
level of this tree, 0 ≤ i ≤ n, represents all the subsets of n items that include a
particular selection made from the first i ordered items. This particular selection
is uniquely determined by the path from the root to the node: a branch going to
the left indicates the inclusion of the next item, and a branch going to the right
indicates its exclusion. We record the total weight w and the total value v of this
selection in the node, along with some upper bound ub on the value of any subset
that can be obtained by adding zero or more items to this selection.

A simple way to compute the upper bound ub is to add to v, the total value of
the items already selected, the product of the remaining capacity of the knapsack
W − w and the best per unit payoff among the remaining items, which is vi+1/wi+1:

ub = v + (W − w)(vi+1/wi+1). (12.1)

As a specific example, let us apply the branch-and-bound algorithm to the
same instance of the knapsack problem we solved in Section 3.4 by exhaustive
search. (We reorder the items in descending order of their value-to-weight ratios,
though.)

value
item weight value

weight

1 4 $40 10
2 7 $42 6 The knapsack’s capacity W is 10.
3 5 $25 5
4 3 $12 4
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FIGURE 12.8 State-space tree of the best-first branch-and-bound algorithm for the
instance of the knapsack problem.

At the root of the state-space tree (see Figure 12.8), no items have been
selected as yet. Hence, both the total weight of the items already selected w and
their total value v are equal to 0. The value of the upper bound computed by
formula (12.1) is $100. Node 1, the left child of the root, represents the subsets
that include item 1. The total weight and value of the items already included are
4 and $40, respectively; the value of the upper bound is 40 + (10 − 4) ∗ 6 = $76.
Node 2 represents the subsets that do not include item 1. Accordingly, w = 0,

v = $0, and ub = 0 + (10 − 0) ∗ 6 = $60. Since node 1 has a larger upper bound than
the upper bound of node 2, it is more promising for this maximization problem,
and we branch from node 1 first. Its children—nodes 3 and 4—represent subsets
with item 1 and with and without item 2, respectively. Since the total weight w of
every subset represented by node 3 exceeds the knapsack’s capacity, node 3 can
be terminated immediately. Node 4 has the same values of w and v as its parent;
the upper bound ub is equal to 40 + (10 − 4) ∗ 5 = $70. Selecting node 4 over node
2 for the next branching (why?), we get nodes 5 and 6 by respectively including
and excluding item 3. The total weights and values as well as the upper bounds for
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these nodes are computed in the same way as for the preceding nodes. Branching
from node 5 yields node 7, which represents no feasible solutions, and node 8,
which represents just a single subset {1, 3} of value $65. The remaining live nodes
2 and 6 have smaller upper-bound values than the value of the solution represented
by node 8. Hence, both can be terminated making the subset {1, 3} of node 8 the
optimal solution to the problem.

Solving the knapsack problem by a branch-and-bound algorithm has a rather
unusual characteristic. Typically, internal nodes of a state-space tree do not define
a point of the problem’s search space, because some of the solution’s components
remain undefined. (See, for example, the branch-and-bound tree for the assign-
ment problem discussed in the preceding subsection.) For the knapsack problem,
however, every node of the tree represents a subset of the items given. We can
use this fact to update the information about the best subset seen so far after
generating each new node in the tree. If we had done this for the instance investi-
gated above, we could have terminated nodes 2 and 6 before node 8 was generated
because they both are inferior to the subset of value $65 of node 5.

Traveling Salesman Problem

We will be able to apply the branch-and-bound technique to instances of the
traveling salesman problem if we come up with a reasonable lower bound on tour
lengths. One very simple lower bound can be obtained by finding the smallest
element in the intercity distance matrix D and multiplying it by the number of
cities n. But there is a less obvious and more informative lower bound for instances
with symmetric matrix D, which does not require a lot of work to compute. It is
not difficult to show (Problem 8 in this section’s exercises) that we can compute a
lower bound on the length l of any tour as follows. For each city i, 1 ≤ i ≤ n, find
the sum si of the distances from city i to the two nearest cities; compute the sum
s of these n numbers, divide the result by 2, and, if all the distances are integers,
round up the result to the nearest integer:

lb = �s/2�. (12.2)

For example, for the instance in Figure 12.9a, formula (12.2) yields

lb = �[(1 + 3) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 3)]/2� = 14.

Moreover, for any subset of tours that must include particular edges of a given
graph, we can modify lower bound (12.2) accordingly. For example, for all the
Hamiltonian circuits of the graph in Figure 12.9a that must include edge (a, d),
we get the following lower bound by summing up the lengths of the two shortest
edges incident with each of the vertices, with the required inclusion of edges (a, d)

and (d, a):

�[(1 + 5) + (3 + 6) + (1 + 2) + (3 + 5) + (2 + 3)]/2� = 16.

We now apply the branch-and-bound algorithm, with the bounding function
given by formula (12.2), to find the shortest Hamiltonian circuit for the graph in
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FIGURE 12.9 (a) Weighted graph. (b) State-space tree of the branch-and-bound algorithm
to find a shortest Hamiltonian circuit in this graph. The list of vertices in
a node specifies a beginning part of the Hamiltonian circuits represented
by the node.

Figure 12.9a. To reduce the amount of potential work, we take advantage of two
observations made in Section 3.4. First, without loss of generality, we can consider
only tours that start at a. Second, because our graph is undirected, we can generate
only tours in which b is visited before c. In addition, after visiting n − 1 = 4 cities,
a tour has no choice but to visit the remaining unvisited city and return to the
starting one. The state-space tree tracing the algorithm’s application is given in
Figure 12.9b.

The comments we made at the end of the preceding section about the strengths
and weaknesses of backtracking are applicable to branch-and-bound as well. To
reiterate the main point: these state-space tree techniques enable us to solve
many large instances of difficult combinatorial problems. As a rule, however, it is
virtually impossible to predict which instances will be solvable in a realistic amount
of time and which will not.

Incorporation of additional information, such as a symmetry of a game’s
board, can widen the range of solvable instances. Along this line, a branch-and-
bound algorithm can be sometimes accelerated by a knowledge of the objective
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function’s value of some nontrivial feasible solution. The information might be
obtainable—say, by exploiting specifics of the data or even, for some problems,
generated randomly—before we start developing a state-space tree. Then we can
use such a solution immediately as the best one seen so far rather than waiting for
the branch-and-bound processing to lead us to the first feasible solution.

In contrast to backtracking, solving a problem by branch-and-bound has both
the challenge and opportunity of choosing the order of node generation and find-
ing a good bounding function. Though the best-first rule we used above is a sensible
approach, it may or may not lead to a solution faster than other strategies. (Arti-
ficial intelligence researchers are particularly interested in different strategies for
developing state-space trees.)

Finding a good bounding function is usually not a simple task. On the one
hand, we want this function to be easy to compute. On the other hand, it cannot
be too simplistic—otherwise, it would fail in its principal task to prune as many
branches of a state-space tree as soon as possible. Striking a proper balance be-
tween these two competing requirements may require intensive experimentation
with a wide variety of instances of the problem in question.

Exercises 12.2

1. What data structure would you use to keep track of live nodes in a best-first
branch-and-bound algorithm?

2. Solve the same instance of the assignment problem as the one solved in
the section by the best-first branch-and-bound algorithm with the bounding
function based on matrix columns rather than rows.

3. a. Give an example of the best-case input for the branch-and-bound algo-
rithm for the assignment problem.

b. In the best case, how many nodes will be in the state-space tree of the
branch-and-bound algorithm for the assignment problem?

4. Write a program for solving the assignment problem by the branch-and-bound
algorithm. Experiment with your program to determine the average size of the
cost matrices for which the problem is solved in a given amount of time, say,
1 minute on your computer.

5. Solve the following instance of the knapsack problem by the branch-and-
bound algorithm:

item weight value

1 10 $100
2 7 $63 W = 16
3 8 $56
4 4 $12
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6. a. Suggest a more sophisticated bounding function for solving the knapsack
problem than the one used in the section.

b. Use your bounding function in the branch-and-bound algorithm applied
to the instance of Problem 5.

7. Write a program to solve the knapsack problem with the branch-and-bound
algorithm.

8. a. Prove the validity of the lower bound given by formula (12.2) for instances
of the traveling salesman problem with symmetric matrices of integer
intercity distances.

b. How would you modify lower bound (12.2) for nonsymmetric distance
matrices?

9. Apply the branch-and-bound algorithm to solve the traveling salesman prob-
lem for the following graph:

2

5
8 7

3

a b

1
c d

(We solved this problem by exhaustive search in Section 3.4.)

10. As a research project, write a report on how state-space trees are used for
programming such games as chess, checkers, and tic-tac-toe. The two principal
algorithms you should read about are the minimax algorithm and alpha-beta
pruning.

12.3 Approximation Algorithms for NP -Hard Problems

In this section, we discuss a different approach to handling difficult problems
of combinatorial optimization, such as the traveling salesman problem and the
knapsack problem. As we pointed out in Section 11.3, the decision versions of
these problems are NP-complete. Their optimization versions fall in the class of
NP-hard problems—problems that are at least as hard as NP-complete problems.2

Hence, there are no known polynomial-time algorithms for these problems, and
there are serious theoretical reasons to believe that such algorithms do not exist.
What then are our options for handling such problems, many of which are of
significant practical importance?

2. The notion of an NP-hard problem can be defined more formally by extending the notion of polynomial
reducibility to problems that are not necessarily in class NP, including optimization problems of the
type discussed in this section (see [Gar79, Chapter 5]).
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If an instance of the problem in question is very small, we might be able to
solve it by an exhaustive-search algorithm (Section 3.4). Some such problems can
be solved by the dynamic programming technique we demonstrated in Section 8.2.
But even when this approach works in principle, its practicality is limited by
dependence on the instance parameters being relatively small. The discovery of
the branch-and-bound technique has proved to be an important breakthrough,
because this technique makes it possible to solve many large instances of difficult
optimization problems in an acceptable amount of time. However, such good
performance cannot usually be guaranteed.

There is a radically different way of dealing with difficult optimization prob-
lems: solve them approximately by a fast algorithm. This approach is particularly
appealing for applications where a good but not necessarily optimal solution will
suffice. Besides, in real-life applications, we often have to operate with inaccurate
data to begin with. Under such circumstances, going for an approximate solution
can be a particularly sensible choice.

Although approximation algorithms run a gamut in level of sophistication,
most of them are based on some problem-specific heuristic. A heuristic is a
common-sense rule drawn from experience rather than from a mathematically
proved assertion. For example, going to the nearest unvisited city in the traveling
salesman problem is a good illustration of this notion. We discuss an algorithm
based on this heuristic later in this section.

Of course, if we use an algorithm whose output is just an approximation of the
actual optimal solution, we would like to know how accurate this approximation
is. We can quantify the accuracy of an approximate solution sa to a problem of
minimizing some function f by the size of the relative error of this approximation,

re(sa) = f (sa) − f (s∗)
f (s∗)

,

where s∗ is an exact solution to the problem. Alternatively, since re(sa) = f (sa)/

f (s∗) − 1, we can simply use the accuracy ratio

r(sa) = f (sa)

f (s∗)

as a measure of accuracy of sa. Note that for the sake of scale uniformity, the
accuracy ratio of approximate solutions to maximization problems is usually com-
puted as

r(sa) = f (s∗)
f (sa)

to make this ratio greater than or equal to 1, as it is for minimization problems.
Obviously, the closer r(sa) is to 1, the better the approximate solution is.

For most instances, however, we cannot compute the accuracy ratio, because we
typically do not know f (s∗), the true optimal value of the objective function.
Therefore, our hope should lie in obtaining a good upper bound on the values
of r(sa). This leads to the following definitions.
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DEFINITION A polynomial-time approximation algorithm is said to be a c-
approximation algorithm, where c ≥ 1, if the accuracy ratio of the approximation
it produces does not exceed c for any instance of the problem in question:

r(sa) ≤ c. (12.3)

The best (i.e., the smallest) value of c for which inequality (12.3) holds for all
instances of the problem is called the performance ratio of the algorithm and
denoted RA.

The performance ratio serves as the principal metric indicating the quality of
the approximation algorithm. We would like to have approximation algorithms
with RA as close to 1 as possible. Unfortunately, as we shall see, some approxima-
tion algorithms have infinitely large performance ratios (RA = ∞). This does not
necessarily rule out using such algorithms, but it does call for a cautious treatment
of their outputs.

There are two important facts about difficult combinatorial optimization
problems worth keeping in mind. First, although the difficulty level of solving
most such problems exactly is the same to within a polynomial-time transforma-
tion of one problem to another, this equivalence does not translate into the realm
of approximation algorithms. Finding good approximate solutions is much easier
for some of these problems than for others. Second, some of the problems have
special classes of instances that are both particularly important for real-life appli-
cations and easier to solve than their general counterparts. The traveling salesman
problem is a prime example of this situation.

Approximation Algorithms for the Traveling
Salesman Problem

We solved the traveling salesman problem by exhaustive search in Section 3.4,
mentioned its decision version as one of the most well-known NP-complete
problems in Section 11.3, and saw how its instances can be solved by a branch-
and-bound algorithm in Section 12.2. Here, we consider several approximation
algorithms, a small sample of dozens of such algorithms suggested over the years
for this famous problem. (For a much more detailed discussion of the topic, see
[Law85], [Hoc97], [App07], and [Gut07].)

But first let us answer the question of whether we should hope to find a
polynomial-time approximation algorithm with a finite performance ratio on all
instances of the traveling salesman problem. As the following theorem [Sah76]
shows, the answer turns out to be no, unless P = NP .

THEOREM 1 If P �= NP, there exists no c-approximation algorithm for the
traveling salesman problem, i.e., there exists no polynomial-time approximation
algorithm for this problem so that for all instances

f (sa) ≤ cf (s∗)

for some constant c.
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PROOF By way of contradiction, suppose that such an approximation algorithm
A and a constant c exist. (Without loss of generality, we can assume that c is a
positive integer.) We will show that this algorithm could then be used for solving
the Hamiltonian circuit problem in polynomial time. We will take advantage of
a variation of the transformation used in Section 11.3 to reduce the Hamiltonian
circuit problem to the traveling salesman problem. Let G be an arbitrary graph
with n vertices. We map G to a complete weighted graph G′ by assigning weight 1 to
each edge in G and adding an edge of weight cn + 1 between each pair of vertices
not adjacent in G. If G has a Hamiltonian circuit, its length in G′ is n; hence, it is
the exact solution s∗ to the traveling salesman problem for G′. Note that if sa is
an approximate solution obtained for G′ by algorithm A, then f (sa) ≤ cn by the
assumption. If G does not have a Hamiltonian circuit in G, the shortest tour in
G′ will contain at least one edge of weight cn + 1, and hence f (sa) ≥ f (s∗) > cn.

Taking into account the two derived inequalities, we could solve the Hamiltonian
circuit problem for graph G in polynomial time by mapping G to G′, applying
algorithm A to get tour sa in G′, and comparing its length with cn. Since the
Hamiltonian circuit problem is NP-complete, we have a contradiction unless P =
NP.

Greedy Algorithms for the TSP The simplest approximation algorithms for the
traveling salesman problem are based on the greedy technique. We will discuss
here two such algorithms.

Nearest-neighbor algorithm

The following well-known greedy algorithm is based on the nearest-neighbor
heuristic: always go next to the nearest unvisited city.

Step 1 Choose an arbitrary city as the start.
Step 2 Repeat the following operation until all the cities have been visited:

go to the unvisited city nearest the one visited last (ties can be broken
arbitrarily).

Step 3 Return to the starting city.

EXAMPLE 1 For the instance represented by the graph in Figure 12.10, with a as
the starting vertex, the nearest-neighbor algorithm yields the tour (Hamiltonian
circuit) sa: a − b − c − d − a of length 10.

1

6
3 3

2

a b

1
d c

FIGURE 12.10 Instance of the traveling salesman problem.
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The optimal solution, as can be easily checked by exhaustive search, is the tour
s∗: a − b − d − c − a of length 8. Thus, the accuracy ratio of this approximation is

r(sa) = f (sa)

f (s∗)
= 10

8
= 1.25

(i.e., tour sa is 25% longer than the optimal tour s∗).

Unfortunately, except for its simplicity, not many good things can be said
about the nearest-neighbor algorithm. In particular, nothing can be said in general
about the accuracy of solutions obtained by this algorithm because it can force us
to traverse a very long edge on the last leg of the tour. Indeed, if we change the
weight of edge (a, d) from 6 to an arbitrary large number w ≥ 6 in Example 1,
the algorithm will still yield the tour a − b − c − d − a of length 4 + w, and the
optimal solution will still be a − b − d − c − a of length 8. Hence,

r(sa) = f (sa)

f (s∗)
= 4 + w

8
,

which can be made as large as we wish by choosing an appropriately large value
of w. Hence, RA = ∞ for this algorithm (as it should be according to Theorem 1).

Multifragment-heuristic algorithm

Another natural greedy algorithm for the traveling salesman problem considers
it as the problem of finding a minimum-weight collection of edges in a given
complete weighted graph so that all the vertices have degree 2. (With this emphasis
on edges rather than vertices, what other greedy algorithm does it remind you
of?) An application of the greedy technique to this problem leads to the following
algorithm [Ben90].

Step 1 Sort the edges in increasing order of their weights. (Ties can be broken
arbitrarily.) Initialize the set of tour edges to be constructed to the
empty set.

Step 2 Repeat this step n times, where n is the number of cities in the instance
being solved: add the next edge on the sorted edge list to the set of tour
edges, provided this addition does not create a vertex of degree 3 or a
cycle of length less than n; otherwise, skip the edge.

Step 3 Return the set of tour edges.

As an example, applying the algorithm to the graph in Figure 12.10 yields
{(a, b), (c, d), (b, c), (a, d)}. This set of edges forms the same tour as the one pro-
duced by the nearest-neighbor algorithm. In general, the multifragment-heuristic
algorithm tends to produce significantly better tours than the nearest-neighbor
algorithm, as we are going to see from the experimental data quoted at the end of
this section. But the performance ratio of the multifragment-heuristic algorithm
is also unbounded, of course.
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There is, however, a very important subset of instances, called Euclidean, for
which we can make a nontrivial assertion about the accuracy of both the nearest-
neighbor and multifragment-heuristic algorithms. These are the instances in which
intercity distances satisfy the following natural conditions:

triangle inequality d[i, j ] ≤ d[i, k] + d[k, j ] for any triple of cities i, j, and
k (the distance between cities i and j cannot exceed the length of a two-leg
path from i to some intermediate city k to j)
symmetry d[i, j ] = d[j, i] for any pair of cities i and j (the distance from i

to j is the same as the distance from j to i)

A substantial majority of practical applications of the traveling salesman prob-
lem are its Euclidean instances. They include, in particular, geometric ones, where
cities correspond to points in the plane and distances are computed by the standard
Euclidean formula. Although the performance ratios of the nearest-neighbor and
multifragment-heuristic algorithms remain unbounded for Euclidean instances,
their accuracy ratios satisfy the following inequality for any such instance with
n ≥ 2 cities:

f (sa)

f (s∗)
≤ 1

2
(�log2 n� + 1),

where f (sa) and f (s∗) are the lengths of the heuristic tour and shortest tour,
respectively (see [Ros77] and [Ong84]).

Minimum-Spanning-Tree–Based Algorithms There are approximation algori-
thms for the traveling salesman problem that exploit a connection between Hamil-
tonian circuits and spanning trees of the same graph. Since removing an edge from
a Hamiltonian circuit yields a spanning tree, we can expect that the structure of
a minimum spanning tree provides a good basis for constructing a shortest tour
approximation. Here is an algorithm that implements this idea in a rather straight-
forward fashion.

Twice-around-the-tree algorithm

Step 1 Construct a minimum spanning tree of the graph corresponding to a
given instance of the traveling salesman problem.

Step 2 Starting at an arbitrary vertex, perform a walk around the minimum
spanning tree recording all the vertices passed by. (This can be done
by a DFS traversal.)

Step 3 Scan the vertex list obtained in Step 2 and eliminate from it all repeated
occurrences of the same vertex except the starting one at the end of
the list. (This step is equivalent to making shortcuts in the walk.) The
vertices remaining on the list will form a Hamiltonian circuit, which is
the output of the algorithm.

EXAMPLE 2 Let us apply this algorithm to the graph in Figure 12.11a. The
minimum spanning tree of this graph is made up of edges (a, b), (b, c), (b, d), and
(d, e) (Figure 12.11b). A twice-around-the-tree walk that starts and ends at a is
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FIGURE 12.11 Illustration of the twice-around-the-tree algorithm. (a) Graph. (b) Walk
around the minimum spanning tree with the shortcuts.

a, b, c, b, d, e, d, b, a.

Eliminating the second b (a shortcut from c to d), the second d , and the third b (a
shortcut from e to a) yields the Hamiltonian circuit

a, b, c, d, e, a

of length 39.

The tour obtained in Example 2 is not optimal. Although that instance is small
enough to find an optimal solution by either exhaustive search or branch-and-
bound, we refrained from doing so to reiterate a general point. As a rule, we do
not know what the length of an optimal tour actually is, and therefore we cannot
compute the accuracy ratio f (sa)/f (s∗). For the twice-around-the-tree algorithm,
we can at least estimate it above, provided the graph is Euclidean.

THEOREM 2 The twice-around-the-tree algorithm is a 2-approximation algo-
rithm for the traveling salesman problem with Euclidean distances.

PROOF Obviously, the twice-around-the-tree algorithm is polynomial time if we
use a reasonable algorithm such as Prim’s or Kruskal’s in Step 1. We need to show
that for any Euclidean instance of the traveling salesman problem, the length of a
tour sa obtained by the twice-around-the-tree algorithm is at most twice the length
of the optimal tour s∗, i.e.,

f (sa) ≤ 2f (s∗).

Since removing any edge from s∗ yields a spanning tree T of weight w(T ), which
must be greater than or equal to the weight of the graph’s minimum spanning tree
w(T ∗), we get the inequality

f (s∗) > w(T ) ≥ w(T ∗).
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This inequality implies that

2f (s∗) > 2w(T ∗) = the length of the walk obtained in Step 2 of the algorithm.

The possible shortcuts outlined in Step 3 of the algorithm to obtain sa cannot
increase the total length of the walk in a Euclidean graph, i.e.,

the length of the walk obtained in Step 2 ≥ the length of the tour sa.

Combining the last two inequalities, we get the inequality

2f (s∗) > f (sa),

which is, in fact, a slightly stronger assertion than the one we needed to prove.

Christofides Algorithm There is an approximation algorithm with a better per-
formance ratio for the Euclidean traveling salesman problem—the well-known
Christofides algorithm [Chr76]. It also uses a minimum spanning tree but does
this in a more sophisticated way than the twice-around-the-tree algorithm. Note
that a twice-around-the-tree walk generated by the latter algorithm is an Eule-
rian circuit in the multigraph obtained by doubling every edge in the graph given.
Recall that an Eulerian circuit exists in a connected multigraph if and only if all
its vertices have even degrees. The Christofides algorithm obtains such a multi-
graph by adding to the graph the edges of a minimum-weight matching of all the
odd-degree vertices in its minimum spanning tree. (The number of such vertices
is always even and hence this can always be done.) Then the algorithm finds an
Eulerian circuit in the multigraph and transforms it into a Hamiltonian circuit by
shortcuts, exactly the same way it is done in the last step of the twice-around-the-
tree algorithm.

EXAMPLE 3 Let us trace the Christofides algorithm in Figure 12.12 on the same
instance (Figure 12.12a) used for tracing the twice-around-the-tree algorithm in
Figure 12.11. The graph’s minimum spanning tree is shown in Figure 12.12b. It has
four odd-degree vertices: a, b, c, and e. The minimum-weight matching of these
four vertices consists of edges (a, b) and (c, e). (For this tiny instance, it can be
found easily by comparing the total weights of just three alternatives: (a, b) and
(c, e), (a, c) and (b, e), (a, e) and (b, c).) The traversal of the multigraph, starting
at vertex a, produces the Eulerian circuit a − b − c − e − d − b − a, which, after
one shortcut, yields the tour a − b − c − e − d − a of length 37.

The performance ratio of the Christofides algorithm on Euclidean instances
is 1.5 (see, e.g., [Pap82]). It tends to produce significantly better approximations
to optimal tours than the twice-around-the-tree algorithm does in empirical tests.
(We quote some results of such tests at the end of this subsection.) The quality of
a tour obtained by this heuristic can be further improved by optimizing shortcuts
made on the last step of the algorithm as follows: examine the multiply-visited
cities in some arbitrary order and for each make the best possible shortcut. This
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FIGURE 12.12 Application of the Christofides algorithm. (a) Graph. (b) Minimum
spanning tree with added edges (in dash) of a minimum-weight matching
of all odd-degree vertices. (c) Hamiltonian circuit obtained.

enhancement would have not improved the tour a − b − c − e − d − a obtained in
Example 3 from a − b − c − e − d − b − a because shortcutting the second occur-
rence of b happens to be better than shortcutting its first occurrence. In general,
however, this enhancement tends to decrease the gap between the heuristic and
optimal tour lengths from about 15% to about 10%, at least for randomly gener-
ated Euclidean instances [Joh07a].

Local Search Heuristics For Euclidean instances, surprisingly good approxima-
tions to optimal tours can be obtained by iterative-improvement algorithms, which
are also called local search heuristics. The best-known of these are the 2-opt, 3-
opt, and Lin-Kernighan algorithms. These algorithms start with some initial tour,
e.g., constructed randomly or by some simpler approximation algorithm such as
the nearest-neighbor. On each iteration, the algorithm explores a neighborhood
around the current tour by replacing a few edges in the current tour by other
edges. If the changes produce a shorter tour, the algorithm makes it the current
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FIGURE 12.13 2-change: (a) Original tour. (b) New tour.

tour and continues by exploring its neighborhood in the same manner; otherwise,
the current tour is returned as the algorithm’s output and the algorithm stops.

The 2-opt algorithm works by deleting a pair of nonadjacent edges in a tour
and reconnecting their endpoints by the different pair of edges to obtain another
tour (see Figure 12.13). This operation is called the 2-change. Note that there is
only one way to reconnect the endpoints because the alternative produces two
disjoint fragments.

EXAMPLE 4 If we start with the nearest-neighbor tour a − b − c − d − e − a in
the graph of Figure 12.11, whose length lnn is equal to 39, the 2-opt algorithm will
move to the next tour as shown in Figure 12.14.

To generalize the notion of the 2-change, one can consider the k-change for
any k ≥ 2. This operation replaces up to k edges in a current tour. In addition to
2-changes, only the 3-changes have proved to be of practical interest. The two
principal possibilities of 3-changes are shown in Figure 12.15.

There are several other local search algorithms for the traveling salesman
problem. The most prominent of them is the Lin-Kernighan algorithm [Lin73],
which for two decades after its publication in 1973 was considered the best algo-
rithm to obtain high-quality approximations of optimal tours. The Lin-Kernighan
algorithm is a variable-opt algorithm: its move can be viewed as a 3-opt move
followed by a sequence of 2-opt moves. Because of its complexity, we have to re-
frain from discussing this algorithm here. The excellent survey by Johnson and
McGeoch [Joh07a] contains an outline of the algorithm and its modern exten-
sions as well as methods for its efficient implementation. This survey also contain
results from the important empirical studies about performance of many heuris-
tics for the traveling salesman problem, including of course, the Lin-Kernighan
algorithm. We conclude our discussion by quoting some of these data.

Empirical Results The traveling salesman problem has been the subject of in-
tense study for the last 50 years. This interest was driven by a combination of pure
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FIGURE 12.14 2-changes from the nearest-neighbor tour of the graph in Figure 12.11.
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FIGURE 12.15 3-change: (a) Original tour. (b), (c) New tours.

theoretical interest and serious practical needs stemming from such newer ap-
plications as circuit-board and VLSI-chip fabrication, X-ray crystallography, and
genetic engineering. Progress in developing effective heuristics, their efficient im-
plementation by using sophisticated data structures, and the ever-increasing power
of computers have led to a situation that differs drastically from a pessimistic pic-
ture painted by the worst-case theoretical results. This is especially true for the
most important applications class of instances of the traveling salesman problem:
points in the two-dimensional plane with the standard Euclidean distances be-
tween them.

Nowadays, Euclidean instances with up to 1000 cities can be solved exactly
in quite a reasonable amount of time—typically, in minutes or faster on a good
workstation—by such optimization packages as Concord [App]. In fact, according
to the information on the Web site maintained by the authors of that package, the
largest instance of the traveling salesman problem solved exactly as of January
2010 was a tour through 85,900 points in a VLSI application. It significantly ex-
ceeded the previous record of the shortest tour through all 24,978 cities in Sweden.
There should be little doubt that the latest record will also be eventually super-
seded and our ability to solve ever larger instances exactly will continue to expand.
This remarkable progress does not eliminate the usefulness of approximation al-
gorithms for such problems, however. First, some applications lead to instances
that are still too large to be solved exactly in a reasonable amount of time. Second,
one may well prefer spending seconds to find a tour that is within a few percent
of optimum than to spend many hours or even days of computing time to find the
shortest tour exactly.

But how can one tell how good or bad the approximate solution is if we do not
know the length of an optimal tour? A convenient way to overcome this difficulty
is to solve the linear programming problem describing the instance in question by
ignoring the integrality constraints. This provides a lower bound—called the Held-
Karp bound—on the length of the shortest tour. The Held-Karp bound is typically
very close (less than 1%) to the length of an optimal tour, and this bound can be
computed in seconds or minutes unless the instance is truly huge. Thus, for a tour
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TABLE 12.1 Average tour quality and running times for various
heuristics on the 10,000-city random uniform
Euclidean instances [Joh07a]

% excess over the Running time
Heuristic Held-Karp bound (seconds)

nearest neighbor 24.79 0.28
multifragment 16.42 0.20
Christofides 9.81 1.04
2-opt 4.70 1.41
3-opt 2.88 1.50
Lin-Kernighan 2.00 2.06

sa obtained by some heuristic, we estimate the accuracy ratio r(sa) = f (sa)/f (s∗)
from above by the ratio f (sa)/HK(s∗), where f (sa) is the length of the heuristic
tour sa and HK(s∗) is the Held-Karp lower bound on the shortest-tour length.

The results (see Table 12.1) from a large empirical study [Joh07a] indicate the
average tour quality and running times for the discussed heuristics.3 The instances
in the reported sample have 10,000 cities generated randomly and uniformly as
integral-coordinate points in the plane, with the Euclidean distances rounded
to the nearest integer. The quality of tours generated by the heuristics remain
about the same for much larger instances (up to a million cities) as long as they
belong to the same type of instances. The running times quoted are for expert
implementations run on a Compaq ES40 with 500 Mhz Alpha processors and 2
gigabytes of main memory or its equivalents.

Asymmetric instances of the traveling salesman problem—i.e., those with a
nonsymmetic matrix of intercity distances—have proved to be significantly harder
to solve, both exactly and approximately, than Euclidean instances. In partic-
ular, exact optimal solutions for many 316-city asymmetric instances remained
unknown at the time of the state-of-the-art survey by Johnson et al. [Joh07b].

Approximation Algorithms for the Knapsack Problem

The knapsack problem, another well-known NP-hard problem, was also intro-
duced in Section 3.4: given n items of known weights w1, . . . , wn and values
v1, . . . , vn and a knapsack of weight capacity W, find the most valuable sub-
set of the items that fits into the knapsack. We saw how this problem can be
solved by exhaustive search (Section 3.4), dynamic programming (Section 8.2),

3. We did not include the results for the twice-around-the-tree heuristic because of the inferior quality
of its approximations with the average excess of about 40%. Nor did we quote the results for the
most sophisticated local search heuristics with the average excess over optimum of less than a fraction
of 1%.
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and branch-and-bound (Section 12.2). Now we will solve this problem by approx-
imation algorithms.

Greedy Algorithms for the Knapsack Problem We can think of several greedy
approaches to this problem. One is to select the items in decreasing order of
their weights; however, heavier items may not be the most valuable in the set.
Alternatively, if we pick up the items in decreasing order of their value, there is
no guarantee that the knapsack’s capacity will be used efficiently. Can we find a
greedy strategy that takes into account both the weights and values? Yes, we can,
by computing the value-to-weight ratios vi/wi, i = 1, 2, . . . , n, and selecting the
items in decreasing order of these ratios. (In fact, we already used this approach in
designing the branch-and-bound algorithm for the problem in Section 12.2.) Here
is the algorithm based on this greedy heuristic.

Greedy algorithm for the discrete knapsack problem

Step 1 Compute the value-to-weight ratios ri = vi/wi, i = 1, . . . , n, for the
items given.

Step 2 Sort the items in nonincreasing order of the ratios computed in Step 1.
(Ties can be broken arbitrarily.)

Step 3 Repeat the following operation until no item is left in the sorted list:
if the current item on the list fits into the knapsack, place it in the
knapsack and proceed to the next item; otherwise, just proceed to the
next item.

EXAMPLE 5 Let us consider the instance of the knapsack problem with the
knapsack capacity 10 and the item information as follows:

item weight value

1 7 $42
2 3 $12
3 4 $40
4 5 $25

Computing the value-to-weight ratios and sorting the items in nonincreasing order
of these efficiency ratios yields

item weight value value/weight

1 4 $40 10
2 7 $42 6
3 5 $25 5
4 3 $12 4
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The greedy algorithm will select the first item of weight 4, skip the next item of
weight 7, select the next item of weight 5, and skip the last item of weight 3. The
solution obtained happens to be optimal for this instance (see Section 12.2, where
we solved the same instance by the branch-and-bound algorithm).

Does this greedy algorithm always yield an optimal solution? The answer, of
course, is no: if it did, we would have a polynomial-time algorithm for the NP-
hard problem. In fact, the following example shows that no finite upper bound on
the accuracy of its approximate solutions can be given either.

EXAMPLE 6

item weight value value/weight

1 1 2 2 The knapsack capacity is W > 2.

2 W W 1

Since the items are already ordered as required, the algorithm takes the first item
and skips the second one; the value of this subset is 2. The optimal selection con-
sists of item 2 whose value is W. Hence, the accuracy ratio r(sa) of this approximate
solution is W/2, which is unbounded above.

It is surprisingly easy to tweak this greedy algorithm to get an approximation
algorithm with a finite performance ratio. All it takes is to choose the better of
two alternatives: the one obtained by the greedy algorithm or the one consisting
of a single item of the largest value that fits into the knapsack. (Note that for
the instance of the preceding example, the second alternative is better than the
first one.) It is not difficult to prove that the performance ratio of this enhanced
greedy algorithm is 2. That is, the value of an optimal subset s∗ will never be more
than twice as large as the value of the subset sa obtained by this enhanced greedy
algorithm, and 2 is the smallest multiple for which such an assertion can be made.

It is instructive to consider the continuous version of the knapsack problem
as well. In this version, we are permitted to take arbitrary fractions of the items
given. For this version of the problem, it is natural to modify the greedy algorithm
as follows.

Greedy algorithm for the continuous knapsack problem

Step 1 Compute the value-to-weight ratios vi/wi, i = 1, . . . , n, for the items
given.

Step 2 Sort the items in nonincreasing order of the ratios computed in Step 1.
(Ties can be broken arbitrarily.)

Step 3 Repeat the following operation until the knapsack is filled to its full
capacity or no item is left in the sorted list: if the current item on the
list fits into the knapsack in its entirety, take it and proceed to the next
item; otherwise, take its largest fraction to fill the knapsack to its full
capacity and stop.
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For example, for the four-item instance used in Example 5 to illustrate the
greedy algorithm for the discrete version, the algorithm will take the first item of
weight 4 and then 6/7 of the next item on the sorted list to fill the knapsack to its
full capacity.

It should come as no surprise that this algorithm always yields an optimal
solution to the continuous knapsack problem. Indeed, the items are ordered
according to their efficiency in using the knapsack’s capacity. If the first item on
the sorted list has weight w1 and value v1, no solution can use w1 units of capacity
with a higher payoff than v1. If we cannot fill the knapsack with the first item
or its fraction, we should continue by taking as much as we can of the second-
most efficient item, and so on. A formal rendering of this proof idea is somewhat
involved, and we will leave it for the exercises.

Note also that the optimal value of the solution to an instance of the contin-
uous knapsack problem can serve as an upper bound on the optimal value of the
discrete version of the same instance. This observation provides a more sophisti-
cated way of computing upper bounds for solving the discrete knapsack problem
by the branch-and-bound method than the one used in Section 12.2.

Approximation Schemes We now return to the discrete version of the knap-
sack problem. For this problem, unlike the traveling salesman problem, there exist
polynomial-time approximation schemes, which are parametric families of algo-
rithms that allow us to get approximations s(k)

a
with any predefined accuracy level:

f (s∗)
f (s

(k)
a )

≤ 1 + 1/k for any instance of size n,

where k is an integer parameter in the range 0 ≤ k < n. The first approximation
scheme was suggested by S. Sahni in 1975 [Sah75]. This algorithm generates all
subsets of k items or less, and for each one that fits into the knapsack it adds the
remaining items as the greedy algorithm would do (i.e., in nonincreasing order
of their value-to-weight ratios). The subset of the highest value obtained in this
fashion is returned as the algorithm’s output.

EXAMPLE 7 A small example of an approximation scheme with k = 2 is pro-
vided in Figure 12.16. The algorithm yields {1, 3, 4}, which is the optimal solution
for this instance.

You can be excused for not being overly impressed by this example. And,
indeed, the importance of this scheme is mostly theoretical rather than practical.
It lies in the fact that, in addition to approximating the optimal solution with any
predefined accuracy level, the time efficiency of this algorithm is polynomial in n.

Indeed, the total number of subsets the algorithm generates before adding extra
elements is

k∑
j=0

(
n

j

)
=

k∑
j=0

n(n − 1) . . . (n − j + 1)
j !

≤
k∑

j=0

nj ≤
k∑

j=0

nk = (k + 1)nk.
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item weight value value/weight

1 4 $40 10
2 7 $42 6
3 5 $25 5
4 1 $ 4 4

capacity W = 10

(a)

subset added items value

∅ 1, 3, 4 $69
{1} 3, 4 $69
{2} 4 $46
{3} 1, 4 $69
{4} 1, 3 $69

{1, 2} not feasible
{1, 3} 4 $69
{1, 4} 3 $69
{2, 3} not feasible
{2, 4} $46
{3, 4} 1 $69

(b)

FIGURE 12.16 Example of applying Sahni’s approximation scheme for k = 2. (a) Instance.
(b) Subsets generated by the algorithm.

For each of those subsets, it needs O(n) time to determine the subset’s possible
extension. Thus, the algorithm’s efficiency is in O(knk+1). Note that although it is
polynomial in n, the time efficiency of Sahni’s scheme is exponential in k. More
sophisticated approximation schemes, called fully polynomial schemes, do not
have this shortcoming. Among several books that discuss such algorithms, the
monographs [Mar90] and [Kel04] are especially recommended for their wealth of
other material about the knapsack problem.

Exercises 12.3

1. a. Apply the nearest-neighbor algorithm to the instance defined by the inter-
city distance matrix below. Start the algorithm at the first city, assuming
that the cities are numbered from 1 to 5.⎡

⎢⎢⎢⎢⎣
0 14 4 10 ∞
14 0 5 8 7
4 5 0 9 16

10 8 9 0 32
∞ 7 16 32 0

⎤
⎥⎥⎥⎥⎦

b. Compute the accuracy ratio of this approximate solution.
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2. a. Write pseudocode for the nearest-neighbor algorithm. Assume that its
input is given by an n × n intercity distance matrix.

b. What is the time efficiency of the nearest-neighbor algorithm?

3. Apply the twice-around-the-tree algorithm to the graph in Figure 12.11a with
a walk around the minimum spanning tree that starts at the same vertex a but
differs from the walk in Figure 12.11b. Is the length of the obtained tour the
same as the length of the tour in Figure 12.11b?

4. Prove that making a shortcut of the kind used by the twice-around-the-tree
algorithm cannot increase the tour’s length in a Euclidean graph.

5. What is the time efficiency class of the greedy algorithm for the knapsack
problem?

6. Prove that the performance ratio RA of the enhanced greedy algorithm for
the knapsack problem is equal to 2.

7. Consider the greedy algorithm for the bin-packing problem, which is called
the first-fit (FF) algorithm: place each of the items in the order given into the
first bin the item fits in; when there are no such bins, place the item in a new
bin and add this bin to the end of the bin list.
a. Apply FF to the instance

s1 = 0.4, s2 = 0.7, s3 = 0.2, s4 = 0.1, s5 = 0.5

and determine whether the solution obtained is optimal.

b. Determine the worst-case time efficiency of FF .

c. Prove that FF is a 2-approximation algorithm.

8. The first-fit decreasing (FFD) approximation algorithm for the bin-packing
problem starts by sorting the items in nonincreasing order of their sizes and
then acts as the first-fit algorithm.
a. Apply FFD to the instance

s1 = 0.4, s2 = 0.7, s3 = 0.2, s4 = 0.1, s5 = 0.5

and determine whether the solution obtained is optimal.

b. Does FFD always yield an optimal solution? Justify your answer.

c. Prove that FFD is a 1.5-approximation algorithm.

d. Run an experiment to determine which of the two algorithms—FF or
FFD—yields more accurate approximations on a random sample of the
problem’s instances.

9. a. Design a simple 2-approximation algorithm for finding a minimum vertex
cover (a vertex cover with the smallest number of vertices) in a given graph.

b. Consider the following approximation algorithm for finding a maximum
independent set (an independent set with the largest number of vertices) in
a given graph. Apply the 2-approximation algorithm of part (a) and output
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all the vertices that are not in the obtained vertex cover. Can we claim that
this algorithm is a 2-approximation algorithm, too?

10. a. Design a polynomial-time greedy algorithm for the graph-coloring prob-
lem.

b. Show that the performance ratio of your approximation algorithm is in-
finitely large.

12.4 Algorithms for Solving Nonlinear Equations

In this section, we discuss several algorithms for solving nonlinear equations in
one unknown,

f (x) = 0. (12.4)

There are several reasons for this choice among subareas of numerical analysis.
First of all, this is an extremely important problem from both a practical and the-
oretical point of view. It arises as a mathematical model of numerous phenomena
in the sciences and engineering, both directly and indirectly. (Recall, for example,
that the standard calculus technique for finding extremum points of a function
f (x) is based on finding its critical points, which are the roots of the equation
f ′(x) = 0.) Second, it represents the most accessible topic in numerical analysis
and, at the same time, exhibits its typical tools and concerns. Third, some meth-
ods for solving equations closely parallel algorithms for array searching and hence
provide examples of applying general algorithm design techniques to problems of
continuous mathematics.

Let us start with dispelling a misconception you might have about solving
equations. Your experience with equation solving from middle school to calculus
courses might have led you to believe that we can solve equations by “factoring”
or by applying a readily available formula. Sorry to break it to you, but you have
been deceived (with the best of educational intentions, of course): you were able
to solve all those equations only because they had been carefully selected to make
it possible. In general, we cannot solve equations exactly and need approximation
algorithms to do so.

This is true even for solving the quadratic equation

ax2 + bx + c = 0

because the standard formula for its roots

x1,2 = −b ±
√

b2 − 4ac

2a

requires computing the square root, which can be done only approximately for
most positive numbers. In addition, as we discussed in Section 11.4, this canonical
formula needs to be modified to avoid the possibility of low-accuracy solutions.
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What about formulas for roots of polynomials of degrees higher than two?
Such formulas for third- and fourth-degree polynomials exist, but they are too
cumbersome to be of practical value. For polynomials of degrees higher than
four, there can be no general formula for their roots that would involve only the
polynomial’s coefficients, arithmetical operations, and radicals (taking roots). This
remarkable result was published first by the Italian mathematician and physician
Paolo Ruffini (1765–1822) in 1799 and rediscovered a quarter century later by the
Norwegian mathematician Niels Abel (1802–1829); it was developed further by
the French mathematician Evariste Galois (1811–1832).4

The impossibility of such a formula can hardly be considered a great disap-
pointment. As the great German mathematician Carl Friedrich Gauss (1777–1855)
put it in his thesis of 1801, the algebraic solution of an equation was no better than
devising a symbol for the root of the equation and then saying that the equation
had a root equal to the symbol [OCo98].

We can interpret solutions to equation (12.4) as points at which the graph
of the function f (x) intersects with the x-axis. The three algorithms we discuss
in this section take advantage of this interpretation. Of course, the graph of f (x)

may intersect the x-axis at a single point (e.g., x3 = 0), at multiple or even infinitely
many points (sin x = 0), or at no point (ex + 1 = 0). Equation (12.4) would then
have a single root, several roots, and no roots, respectively. It is a good idea to
sketch a graph of the function before starting to approximate its roots. It can help
to determine the number of roots and their approximate locations. In general, it
is a good idea to isolate roots, i.e., to identify intervals containing a single root of
the equation in question.

Bisection Method

This algorithm is based on an observation that the graph of a continuous function
must intersect with the x-axis between two points a and b at least once if the
function’s values have opposite signs at these two points (Figure 12.17).

The validity of this observation is proved as a theorem in calculus courses, and
we take it for granted here. It serves as the basis of the following algorithm, called
the bisection method , for solving equation (12.4). Starting with an interval [a, b]
at whose endpoints f (x) has opposite signs, the algorithm computes the value of
f (x) at the middle point xmid = (a + b)/2. If f (xmid) = 0, a root was found and the
algorithm stops. Otherwise, it continues the search for a root either on [a, xmid] or
on [xmid, b], depending on which of the two halves the values of f (x) have opposite
signs at the endpoints of the new interval.

Since we cannot expect the bisection algorithm to stumble on the exact value
of the equation’s root and stop, we need a different criterion for stopping the algo-

4. Ruffini’s discovery was completely ignored by almost all prominent mathematicians of that time. Abel
died young after a difficult life of poverty. Galois was killed in a duel when he was only 21 years old.
Their results on the solution of higher-degree equations are now considered to be among the crowning
achievements in the history of mathematics.
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a bx1
x

f(x)

FIGURE 12.17 First iteration of the bisection method: x1 is the middle point of interval
[a, b].

rithm. We can stop the algorithm after the interval [an, bn]bracketing some root x∗
becomes so small that we can guarantee that the absolute error of approximating
x∗ by xn, the middle point of this interval, is smaller than some small preselected
number ε > 0. Since xn is the middle point of [an, bn] and x∗ lies within this interval
as well, we have

|xn − x∗| ≤ bn − an

2
. (12.5)

Hence, we can stop the algorithm as soon as (bn − an)/2 < ε or, equivalently,

xn − an < ε. (12.6)

It is not difficult to prove that

|xn − x∗| ≤ b1 − a1

2n
for n = 1, 2, . . . . (12.7)

This inequality implies that the sequence of approximations {xn} can be made as
close to root x∗ as we wish by choosing n large enough. In other words, we can say
that {xn} converges to root x∗. Note, however, that because any digital computer
represents extremely small values by zero (Section 11.4), the convergence asser-
tion is true in theory but not necessarily in practice. In fact, if we choose ε below
a certain machine-dependent threshold, the algorithm may never stop! Another
source of potential complications is round-off errors in computing values of the
function in question. Therefore, it is a good practice to include in a program im-
plementing the bisection method a limit on the number of iterations the algorithm
is allowed to run.

Here is pseudocode of the bisection method.

ALGORITHM Bisection(f (x), a, b, eps, N)

//Implements the bisection method for finding a root of f (x) = 0
//Input: Two real numbers a and b, a < b,

// a continuous function f (x) on [a, b], f (a)f (b) < 0,

// an upper bound on the absolute error eps > 0,

// an upper bound on the number of iterations N
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//Output: An approximate (or exact) value x of a root in (a, b)

//or an interval bracketing the root if the iteration number limit is reached
n ← 1 //iteration count
while n ≤ N do

x ← (a + b)/2
if x − a < eps return x

fval ← f (x)

if fval = 0 return x

if fval ∗f (a) < 0
b ← x

else a ← x

n ← n + 1
return “iteration limit”, a, b

Note that we can use inequality (12.7) to find in advance the number of
iterations that should suffice, at least in theory, to achieve a preselected accuracy
level. Indeed, choosing the number of iterations n large enough to satisfy (b1 −
a1)/2n < ε, i.e.,

n > log2
b1 − a1

ε
, (12.8)

does the trick.

EXAMPLE 1 Let us consider equation

x3 − x − 1 = 0. (12.9)

It has one real root. (See Figure 12.18 for the graph of f (x) = x3 − x − 1.) Since
f (0) < 0 and f (2) > 0, the root must lie within interval [0, 2]. If we choose the
error tolerance level as ε = 10−2, inequality (12.8) would require n > log2(2/10−2)

or n ≥ 8 iterations.
Figure 12.19 contains a trace of the first eight iterations of the bisection

method applied to equation (12.9).
Thus, we obtained x8 = 1.3203125 as an approximate value for the root x∗ of

equation (12.9), and we can guarantee that

|1.3203125 − x∗| < 10−2.

Moreover, if we take into account the signs of the function f (x) at a8, b8, and x8,

we can assert that the root lies between 1.3203125 and 1.328125.

The principal weakness of the bisection method as a general algorithm for
solving equations is its slow rate of convergence compared with other known
methods. It is for this reason that the method is rarely used. Also, it cannot be
extended to solving more general equations and systems of equations. But it does
have several strong points. It always converges to a root whenever we start with an
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0 2

f(x) = x3 – x – 1

y

x

FIGURE 12.18 Graph of function f (x) = x3 − x − 1.

n an bn xn f (xn)

1 0.0− 2.0+ 1.0 −1.0
2 1.0− 2.0+ 1.5 0.875
3 1.0− 1.5+ 1.25 −0.296875
4 1.25− 1.5+ 1.375 0.224609
5 1.25− 1.375+ 1.3125 −0.051514
6 1.3125− 1.375+ 1.34375 0.082611
7 1.3125− 1.34375+ 1.328125 0.014576
8 1.3125− 1.328125+ 1.3203125 −0.018711

FIGURE 12.19 Trace of the bisection method for solving equation (12.8). The signs
after the numbers in the second and third columns indicate the sign of
f (x) = x3 − x − 1 at the corresponding endpoints of the intervals.

interval whose properties are very easy to check. And it does not use derivatives
of the function f (x) as some faster methods do.

What important algorithm does the method of bisection remind you of? If
you have found it to closely resemble binary search, you are correct. Both of
them solve variations of the searching problem, and they are both divide-by-
half algorithms. The principal difference lies in the problem’s domain: discrete
for binary search and continuous for the bisection method. Also note that while
binary search requires its input array to be sorted, the bisection method does not
require its function to be nondecreasing or nonincreasing. Finally, whereas binary
search is very fast, the bisection method is relatively slow.
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f(x)

x
an xn bn

FIGURE 12.20 Iteration of the method of false position.

Method of False Position

The method of false position (also known by its name in Latin, regula falsi) is to
interpolation search as the bisection method is to binary search. Like the bisection
method, it has, on each iteration, some interval [an, bn] bracketing a root of a
continuous function f (x) that has opposite-sign values at an and bn. Unlike the
bisection method, however, it computes the next root approximation not as the
middle of [an, bn] but as the x-intercept of the straight line through the points
(an, f (an)) and (bn, f (bn)) (Figure 12.20).

You are asked in the exercises to show that the formula for this x-intercept
can be written as

xn = anf (bn) − bnf (an)

f (bn) − f (an)
. (12.10)

EXAMPLE 2 Figure 12.21 contains the results of the first eight iterations of this
method for solving equation (12.9).

Although for this example the method of false position does not perform
as well as the bisection method, for many instances it yields a faster converging
sequence.

Newton’s Method

Newton’s method , also called the Newton-Raphson method , is one of the most im-
portant general algorithms for solving equations. When applied to equation (12.4)
in one unknown, it can be illustrated by Figure 12.22: the next element xn+1 of the
method’s approximation sequence is obtained as the x-intercept of the tangent
line to the graph of function f (x) at xn.

The analytical formula for the elements of the approximation sequence turns
out to be

xn+1 = xn − f (xn)

f ′(xn)
for n = 0, 1, . . . . (12.11)
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an bn xn f (xn)

1 0.0− 2.0+ 0.333333 −1.296296
2 0.333333− 2.0+ 0.676471 −1.366909
3 0.676471− 2.0+ 0.960619 −1.074171
4 0.960619− 2.0+ 1.144425 −0.645561
5 1.144425− 2.0+ 1.242259 −0.325196
6 1.242259− 2.0+ 1.288532 −0.149163
7 1.288532− 2.0+ 1.309142 −0.065464
8 1.309142− 2.0+ 1.318071 −0.028173

FIGURE 12.21 Trace of the method of false position for equation (12.9). The signs
after the numbers in the second and third columns indicate the sign of
f (x) = x3 − x − 1 at the corresponding endpoints of the intervals.

f(xn)

x
xnxn + 1

FIGURE 12.22 Iteration of Newton’s method.

In most cases, Newton’s algorithm guarantees convergence of sequence (12.11) if
an initial approximation x0 is chosen “close enough” to the root. (Precisely defined
prescriptions for choosing x0 can be found in numerical analysis textbooks.) It may
converge for initial approximations far from the root as well, but this is not always
true.

EXAMPLE 3 Computing
√

a for a ≥ 0 can be done by finding a nonnegative root
of equation x2 − a = 0. If we use formula (12.11) for this case of f (x) = x2 − a and
f ′(x) = 2x, we obtain

xn+1 = xn − f (xn)

f ′(xn)
= xn − x2

n
− a

2xn

= x2
n

+ a

2xn

= 1
2
(xn + a

xn

),
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which is exactly the formula we used in Section 11.4 for computing approximate
values of square roots.

EXAMPLE 4 Let us apply Newton’s method to equation (12.9), which we previ-
ously solved with the bisection method and the method of false position. Formula
(12.11) for this case becomes

xn+1 = xn − x3
n
− xn − 1

3x2
n

− 1
.

As an initial element of the approximation sequence, we take, say, x0 = 2. Fig-
ure 12.23 contains the results of the first five iterations of Newton’s method.

You cannot fail to notice how much faster Newton’s approximation sequence
converges to the root than the approximation sequences of both the bisection
method and the method of false position. This very fast convergence is typical of
Newton’s method if an initial approximation is close to the equation’s root. Note,
however, that on each iteration of this method we need to evaluate new values of
the function and its derivative, whereas the previous two methods require only one
new value of the function itself. Also, Newton’s method does not bracket a root as
these two methods do. Moreover, for an arbitrary function and arbitrarily chosen
initial approximation, its approximation sequence may diverge. And, because
formula (12.11) has the function’s derivative in the denominator, the method may
break down if it is equal to zero. In fact, Newton’s method is most effective when
f ′(x) is bounded away from zero near root x∗. In particular, if

|f ′(x)| ≥ m1 > 0

on the interval between xn and x∗, we can estimate the distance between xn and
x∗ by using the Mean Value Theorem of calculus as follows:

f (xn) − f (x∗) = f ′(c)(xn − x∗),

where c is some point between xn and x∗. Since f (x∗) = 0 and |f ′(c)| ≥ m1, we
obtain

n xn xn+1 f (xn+1)

0 2.0 1.545455 1.145755
1 1.545455 1.359615 0.153705
2 1.359615 1.325801 0.004625
3 1.325801 1.324719 4.7.10−6

4 1.324719 1.324718 5.10−12

FIGURE 12.23 Trace of Newton’s method for equation (12.9).
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|xn − x∗| ≤ |f (xn)|
m1

. (12.12)

Formula (12.12) can be used as a criterion for stopping Newton’s algorithm when
its right-hand side becomes smaller than a preselected accuracy level ε. Other
possible stopping criteria are

|xn − xn−1| < ε

and

|f (xn)| < ε,

where ε is a small positive number. Since the last two criteria do not necessarily
imply closeness of xn to root x∗, they should be considered inferior to the one
based on (12.12).

The shortcomings of Newton’s method should not overshadow its principal
strengths: fast convergence for an appropriately chosen initial approximation and
applicability to much more general types of equations and systems of equations.

Exercises 12.4

1. a. Find on the Internet or in your library a procedure for finding a real root
of the general cubic equation ax3 + bx2 + cx + d = 0 with real coefficients.

b. What general algorithm design technique is it based on?

2. Indicate how many roots each of the following equations has:
a. xex − 1 = 0 b. x − ln x = 0 c. x sin x − 1 = 0

3. a. Prove that if p(x) is a polynomial of an odd degree, then it must have at
least one real root.

b. Prove that if x0 is a root of an n-degree polynomial p(x), the polynomial
can be factored into

p(x) = (x − x0)q(x),

where q(x) is a polynomial of degree n − 1. Explain what significance this
theorem has for finding the roots of a polynomial.

c. Prove that if x0 is a root of an n-degree polynomial p(x), then

p′(x0) = q(x0),

where q(x) is the quotient of the division of p(x) by x − x0.

4. Prove inequality (12.7).

5. Apply the bisection method to find the root of the equation

x3 + x − 1 = 0

with an absolute error smaller than 10−2.
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6. Derive formula (12.10) underlying the method of false position.

7. Apply the method of false position to find the root of the equation

x3 + x − 1 = 0

with an absolute error smaller than 10−2.

8. Derive formula (12.11) underlying Newton’s method.

9. Apply Newton’s method to find the root of the equation

x3 + x − 1 = 0

with an absolute error smaller than 10−2.

10. Give an example that shows that the approximation sequence of Newton’s
method may diverge.

11. Gobbling goat There is a grassy field in the shape of a circle with a radius of
100 feet. A goat is attached by a rope to a hook at a fixed point on the field’s
border. How long should the rope be to let the goat reach only half of the
grass in the field?

SUMMARY

Backtracking and branch-and-bound are two algorithm design techniques for
solving problems in which the number of choices grows at least exponentially
with their instance size. Both techniques construct a solution one component
at a time, trying to terminate the process as soon as one can ascertain that no
solution can be obtained as a result of the choices already made. This approach
makes it possible to solve many large instances of NP-hard problems in an
acceptable amount of time.

Both backtracking and branch-and-bound employ, as their principal mech-
anism, a state-space tree—a rooted tree whose nodes represent partially
constructed solutions to the problem in question. Both techniques terminate
a node as soon as it can be guaranteed that no solution to the problem can be
obtained by considering choices that correspond to the node’s descendants.

Backtracking constructs its state-space tree in the depth-first-search fashion
in the majority of its applications. If the sequence of choices represented by a
current node of the state-space tree can be developed further without violating
the problem’s constraints, it is done by considering the first remaining
legitimate option for the next component. Otherwise, the method backtracks
by undoing the last component of the partially built solution and replaces it
by the next alternative.

Branch-and-bound is an algorithm design technique that enhances the idea
of generating a state-space tree with the idea of estimating the best value
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obtainable from a current node of the decision tree: if such an estimate is not
superior to the best solution seen up to that point in the processing, the node
is eliminated from further consideration.

Approximation algorithms are often used to find approximate solutions to
difficult problems of combinatorial optimization. The performance ratio is the
principal metric for measuring the accuracy of such approximation algorithms.

The nearest-neighbor and multifragment heuristic are two simple greedy
algorithms for approximating a solution to the traveling salesman problem.
The performance ratios of these algorithms are unbounded above, even for
the important subset of Euclidean graphs.

The twice-around-the-tree and Christofides algorithms exploit the graph’s
minimum spanning tree to construct an Eulerian circuit and then transform it
into a Hamiltonian circuit (an approximate solution to the TSP) by shortcuts.
For Euclidean graphs, the performance ratios of these algorithms are 2 and
1.5, respectively.

Local search heuristics—the 2-opt, 3-opt, and Lin-Kernighan algorithms—
work by replacing a few edges in the current tour to find a shorter one until
no such replacement can be found. These algorithms are capable of finding
in seconds a tour that is within a few percent of optimum for large Euclidean
instances of the traveling salesman problem.

A sensible greedy algorithm for the knapsack problem is based on processing
an input’s items in descending order of their value-to-weight ratios. For the
continuous version of the problem, this algorithm always yields an exact
optimal solution.

Polynomial approximation schemes for the knapsack problem are polynomial-
time parametric algorithms that approximate solutions with any predefined
accuracy level.

Solving nonlinear equations is one of the most important areas of numerical
analysis. Although there are no formulas for roots of nonlinear equations
(with a few exceptions), several algorithms can solve them approximately.

The bisection method and the method of false position are continuous
analogues of binary search and interpolation search, respectively. Their
principal advantage lies in bracketing a root on each iteration of the algorithm.

Newton’s method generates a sequence of root approximations that are
x-intercepts of tangent lines to the function’s graph. With a good initial
approximation, it typically requires just a few iterations to obtain a high-
accuracy approximation to the equation’s root.
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Epilogue

Science is nothing but trained and organized common sense.
—Thomas H. Huxley (1825–1895), English biologist and educator

Well, we have arrived. It was a long road. Not as long as it took humanity
to travel from Euclid’s algorithm, which opens this book, to the latest

developments in algorithmics, but it was long enough. So let us now take a last
look at what we have learned during the journey.

We started with the well-accepted proposition that the notion of an algorithm
constitutes the cornerstone of computer science. And since computer programs
are just implementations of algorithms on particular machines, algorithms lie at
the heart of practical computing, too.

Like any science, computer science is concerned with classifying its principal
subject. Although algorithms can be classified in numerous ways, two of them
are particularly important. We can classify algorithms by their underlying design
technique and by their efficiency. These two principal dimensions reflect the needs
of computing practice as well: we need design techniques as a guide for developing
a new algorithm, and we need a framework to ascertain the efficiency of a given
algorithm.

We discussed 10 general design techniques in this book:

brute force dynamic programming

decrease-and-conquer greedy technique

divide-and-conquer iterative improvement

transform-and-conquer backtracking

space-time trade-offs branch-and-bound
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We showed how these techniques apply to a variety of important problems in
computer science: sorting, searching, string processing, graphs, and some geomet-
ric and numerical problems. Although these basic techniques are not all applicable
to every problem, taken collectively they provide a powerful tool kit for designing
new algorithms and classifying existing ones. Moreover, these techniques can be
thought of as general problem-solving approaches not limited to the computing
domain. The puzzles included in the book make this point.

The analysis framework classifies algorithms by the order of growth of their
running time as a function of input size. It does so by investigating the number of
times the algorithm’s basic operation is executed. The main tools are summation
formulas and recurrence relations for nonrecursive and recursive algorithms, re-
spectively. We saw that a surprisingly large number of algorithms fall into one of
the few classes on the following list.

class notation important examples

constant time �(1) hashing (on average)
logarithmic �(log n) binary search (worst and average cases)
linear �(n) sequential search (worst and average cases)
linearithmic �(n log n) advanced sorting algorithms
quadratic �(n2) elementary sorting algorithms
cubic �(n3) Gaussian elimination
exponential �(an) combinatorial problems

For some algorithms, we must distinguish between the worst-, best-, and
average-case efficiencies. The average case is particularly difficult to investigate,
and we discussed how one can do this empirically.

We touched on the limitations of algorithms. We saw that there are two
major reasons for such limitations: the intrinsic complexity of a problem and the
necessity of dealing with rounded-off numbers for most numerical problems. We
also discussed approaches for dealing with such limitations.

It should come as no surprise, however, that there are areas of algorithmics
that were not covered in this book. The most important of them are randomized
and parallel algorithms. A randomized algorithm is an algorithm that makes ran-
dom choices during its execution. For example, we can randomly select an array’s
element to serve as a pivot in sorting the array by quicksort. Unlike a determinis-
tic algorithm, a randomized algorithm behaves differently on different runs with
the same input and may even yield different results. For many applications, this
variability can be to our advantage, yielding randomized algorithms that are faster
or simpler (or both) than their deterministic counterparts.

One of the most impressive randomized algorithms discovered to date is
the Miller-Rabin algorithm for primality testing of integers (e.g., [Cor09]). This
randomized algorithm solves the problem in an acceptable amount of time for
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thousand-digit numbers with the probability of yielding an erroneous answer
smaller than the probability of hardware malfunction. It is much faster than the
best known deterministic algorithms for solving this problem, which is crucial for
modern cryptology. If you want to learn more about randomized algorithms, the
monograph by R. Motwani and P. Raghavan [Mot95] and the excellent survey by
R. M. Karp [Kar91] are particularly recommended.

The vast majority of computers in use today still closely resemble the ma-
chine outlined more than half a century ago by John von Newmann. The central
assumption of this architecture is that instructions are executed one after another,
one operation at a time. Accordingly, algorithms designed to be executed on such
machines are called sequential algorithms. It is this kind of algorithm that we
discussed in this book. The central assumption of the von Neumann model does
not hold for some newer computers that can execute operations concurrently, i.e.,
in parallel. Algorithms that take advantage of this capability are called parallel
algorithms.

Consider, as an example, the problem of computing the sum of n numbers
stored in an array A[0..n − 1]. One can prove that any sequential algorithm that
uses only multiplications, additions, and subtractions requires at least n − 1 steps
to solve this problem. However, if we can pair and find the sum of elements A[0]
and A[1], A[2] and A[3], and so on, in parallel, the size of the problem will be
reduced by half. Repeating this operation until the entire sum is computed yields
an algorithm that requires just �log2 n� steps.

There is a wealth of books devoted to parallel algorithms. Several general-
purpose algorithm textbooks include separate chapters on parallel algorithms
([Hor07] providing particularly extensive coverage of them) or discuss them to-
gether with sequential algorithms (see [Ber05], [Mil05]).

The juggernaut of technological innovations has also produced some promis-
ing breakthroughs—such as quantum computing and DNA computing—that
might have a dramatic impact on the computational capabilities and algorithms
of the future. Quantum computing (see, e.g., [Yan08]) seeks to exploit a quantum
physics phenomenon of having a subatomic particle in two states simultaneously.
Hence, at least theoretically, a system of n such particles, called “qubits,” can
simultaneously contain 2n bits of information. In 1994, Peter Shor of AT&T Re-
search Labs presented an algorithm for factoring an integer that took advantage
of this theoretical possibility [Sho94]. This algorithm requires only O(b3) time
and O(b) space on b-bit number inputs. Moreover, IBM researchers were able
to build a 7-qubit computer that actually implemented Shor’s algorithm and suc-
cessfully factored the number 15 into 3 and 5. Although technological problems
of scaling this and similar approaches to larger problems are formidable and may
still prove to be insurmountable, quantum computing has the potential to change
our current ideas about the difficulty of some computational problems. But it is
worth pointing out that integer factoring (more accurately, its decision version),
though certainly difficult, is believed not to be NP-complete. Therefore, solving it
efficiently on a quantum computer would not imply existence of polynomial-time
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quantum algorithms for all intractable problems. In fact, it is believed that the
class of problems that can be solved in polynomial time on a quantum computer
and the class of NP-complete problems are disjoint subsets of class NP.

If quantum computing seeks to harness the power of quantum physics to solve
difficult computational problems, DNA computing seeks to accomplish the same
goal via exploiting the mechanism of gene selection. The most famous example
of this approach was provided in the same year, 1994, by Len Adleman [Adl94], a
U.S. computer scientist well-known for his participation in the development of the
very important RSA encryption algorithm. He showed how the problem of finding
a Hamiltonian path in a directed graph can in principle be solved by generating
DNA strands representing paths in the graph and discarding those of them that
did not satisfy the definition of such a path. The existence of a Hamiltonian path
is known to be an NP-complete problem, and Adleman’s approach is similar to
exhaustive search. But a huge number of biochemical processes are occurring in
parallel, leaving the hope of yielding a solution in an acceptable amount of time.
Adleman was able to solve the Hamiltonian path problem for a small graph of
seven vertices, although he had to repeat parts of the procedure several times to
purify the DNA solution.

Scaling Adleman’s approach to larger graphs would require an exponentially
fast growing number of the nucleotides needed by this procedure. Although the
true potential of DNA computing remains unclear, several research teams around
the world continue working on it. Among a few reported successes, NASA an-
nounced in 2002 that a team led by Adleman developed a DNA computer that
solved a problem requiring evaluation of 1 million alternatives for their ability to
satisfy 24 different criteria. The same year, researchers from the Weizmann Insti-
tute of Science in Israel unveiled a programmable molecular computing machine
composed of enzymes and DNA molecules instead of silicon microchips. While
that computer was limited to solving decision problems only, researchers at the
California Institute of Technology announced in 2011 the most complex biochem-
ical circuit to date, which was able to compute the square root rounded down to
the nearest integer of a number up to 15.

So, whichever direction you take in your future journey through the land of
algorithms in your studies and your career, the road ahead is as exciting as it has
ever been. Not many areas of science and engineering can make this claim with
the same assurance that algorithmics can. Have a great trip!



APPENDIX A

Useful Formulas for the
Analysis of Algorithms

This appendix contains a list of useful formulas and rules that are helpful in the
mathematical analysis of algorithms. More advanced material can be found in
[Gra94], [Gre07], [Pur04], and [Sed96].

Properties of Logarithms

All logarithm bases are assumed to be greater than 1 in the formulas below; lg x

denotes the logarithm base 2, ln x denotes the logarithm base e = 2.71828 . . . ;
x, y are arbitrary positive numbers.

1. loga 1 = 0

2. loga a = 1

3. loga xy = y loga x

4. loga xy = loga x + loga y

5. loga

x

y
= loga x − loga y

6. alogb x = xlogb a

7. loga x = logb x

logb a
= loga b logb x

Combinatorics

1. Number of permutations of an n-element set: P(n) = n!

2. Number of k-combinations of an n-element set: C(n, k) = n!
k!(n − k)!

3. Number of subsets of an n-element set: 2n
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Important Summation Formulas

1.
u∑

i=l

1 = 1 + 1 + . . . + 1︸ ︷︷ ︸
u−l+1 times

= u − l + 1 (l, u are integer limits, l ≤ u);
n∑

i=1

1 = n

2.
n∑

i=1

i = 1 + 2 + . . . + n = n(n + 1)
2

≈ 1
2
n2

3.
n∑

i=1

i2 = 12 + 22 + . . . + n2 = n(n + 1)(2n + 1)
6

≈ 1
3
n3

4.
n∑

i=1

ik = 1k + 2k + . . . + nk ≈ 1
k + 1

nk+1

5.
n∑

i=0

ai = 1 + a + . . . + an =an+1 − 1
a − 1

(a �= 1);
n∑

i=0

2i = 2n+1 − 1

6.
n∑

i=1

i2i = 1 . 2 + 2 . 22 + . . . + n2n = (n − 1)2n+1 + 2

7.
n∑

i=1

1
i

= 1 + 1
2

+ . . . + 1
n

≈ ln n + γ , where γ ≈ 0.5772 . . . (Euler’s constant)

8.
n∑

i=1

lg i ≈ n lg n

Sum Manipulation Rules

1.
u∑

i=l

cai = c

u∑
i=l

ai

2.
u∑

i=l

(ai ± bi) =
u∑

i=l

ai ±
u∑

i=l

bi

3.
u∑

i=l

ai =
m∑

i=l

ai +
u∑

i=m+1

ai, where l ≤ m < u

4.
u∑

i=l

(ai − ai−1) = au − al−1
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Approximation of a Sum by a Definite Integral

∫ u

l−1
f (x)dx ≤

u∑
i=l

f (i) ≤
∫ u+1

l

f (x)dx for a nondecreasing f (x)

∫ u+1

l

f (x)dx ≤
u∑

i=l

f (i) ≤
∫ u

l−1
f (x)dx for a nonincreasing f (x)

Floor and Ceiling Formulas

The floor of a real number x, denoted �x�, is defined as the greatest integer not
larger than x (e.g., �3.8� = 3, �−3.8� = −4, �3� = 3). The ceiling of a real number x,

denoted �x�, is defined as the smallest integer not smaller than x (e.g., �3.8� = 4,

�−3.8� = −3, �3� = 3).

1. x − 1 < �x� ≤ x ≤ �x� < x + 1

2. �x + n� = �x� + n and �x + n� = �x� + n for real x and integer n

3. �n/2� + �n/2� = n

4. �lg(n + 1)� = �lg n� + 1

Miscellaneous

1. n!≈ √
2πn

(
n

e

)n

as n → ∞ (Stirling’s formula)

2. Modular arithmetic (n, m are integers, p is a positive integer)

(n + m) mod p = (n mod p + m mod p) mod p

(nm) mod p = ((n mod p)(m mod p)) mod p



This page intentionally left blank 



APPENDIX B

Short Tutorial on Recurrence
Relations

Sequences and Recurrence Relations

DEFINITION A (numerical) sequence is an ordered list of numbers.

Examples: 2, 4, 6, 8, 10, 12, . . . (positive even integers)

0, 1, 1, 2, 3, 5, 8, . . . (the Fibonacci numbers)

0, 1, 3, 6, 10, 15, . . . (numbers of key comparisons in selection sort)

A sequence is usually denoted by a letter (such as x or a) with a subindex
(such as n or i) written in curly brackets, e.g., {xn}. We use the alternative notation
x(n). This notation stresses the fact that a sequence is a function: its argument n

indicates a position of a number in the list, while the function’s value x(n) stands
for that number itself. x(n) is called the generic term of the sequence.

There are two principal ways to define a sequence:

by an explicit formula expressing its generic term as a function of n, e.g.,
x(n) = 2n for n ≥ 0
by an equation relating its generic term to one or more other terms of the
sequence, combined with one or more explicit values for the first term(s),
e.g.,

x(n) = x(n − 1) + n for n > 0, (B.1)

x(0) = 0. (B.2)

It is the latter method that is particularly important for analysis of recursive
algorithms (see Section 2.4 for a detailed discussion of this topic).

An equation such as (B.1) is called a recurrence equation or recurrence rela-
tion (or simply a recurrence), and an equation such as (B.2) is called its initial con-
dition. An initial condition can be given for a value of n other than 0 (e.g., for n = 1)
and for some recurrences (e.g., for the recurrence F(n) = F(n − 1) + F(n − 2)
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defining the Fibonacci numbers—see Section 2.5), more than one value needs to
be specified by initial conditions.

To solve a given recurrence subject to a given initial condition means to find
an explicit formula for the generic term of the sequence that satisfies both the
recurrence equation and the initial condition or to prove that such a sequence does
not exist. For example, the solution to recurrence (B.1) subject to initial condition
(B.2) is

x(n) = n(n + 1)
2

for n ≥ 0. (B.3)

It can be verified by substituting this formula into (B.1) to check that the equality
holds for every n > 0, i.e., that

n(n + 1)
2

= (n − 1)(n − 1 + 1)
2

+ n

and into (B.2) to check that x(0) = 0, i.e., that

0(0 + 1)
2

= 0.

Sometimes it is convenient to distinguish between a general solution and
a particular solution to a recurrence. Recurrence equations typically have an
infinite number of sequences that satisfy them. A general solution to a recurrence
equation is a formula that specifies all such sequences. Typically, a general solution
involves one or more arbitrary constants. For example, for recurrence (B.1), the
general solution can be specified by the formula

x(n) = c + n(n + 1)
2

, (B.4)

where c is such an arbitrary constant. By assigning different values to c, we can
get all the solutions to equation (B.1) and only these solutions.

A particular solution is a specific sequence that satisfies a given recurrence
equation. Usually we are interested in a particular solution that satisfies a given
initial condition. For example, sequence (B.3) is a particular solution to (B.1)–
(B.2).

Methods for Solving Recurrence Relations

No universal method exists that would enable us to solve every recurrence rela-
tion. (This is not surprising, because we do not have such a method even for solving
much simpler equations in one unknown f (x) = 0 for an arbitrary function f (x).)
There are several techniques, however, some more powerful than others, that can
solve a variety of recurrences.

Method of Forward Substitutions Starting with the initial term (or terms) of the
sequence given by the initial condition(s), we can use the recurrence equation to
generate the few first terms of its solution in the hope of seeing a pattern that can be
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expressed by a closed-end formula. If such a formula is found, its validity should be
either checked by direct substitution into the recurrence equation and the initial
condition (as we did for (B.1)–(B.2)) or proved by mathematical induction.

For example, consider the recurrence

x(n) = 2x(n − 1) + 1 for n > 1, (B.5)

x(1) = 1. (B.6)

We obtain the few first terms as follows:

x(1) = 1,

x(2) = 2x(1) + 1 = 2 . 1 + 1 = 3,

x(3) = 2x(2) + 1 = 2 . 3 + 1 = 7,

x(4) = 2x(3) + 1 = 2 . 7 + 1 = 15.

It is not difficult to notice that these numbers are one less than consecutive powers
of 2:

x(n) = 2n − 1 for n = 1, 2, 3, and 4.

We can prove the hypothesis that this formula yields the generic term of the
solution to (B.5)–(B.6) either by direct substitution of the formula into (B.5) and
(B.6) or by mathematical induction.

As a practical matter, the method of forward substitutions works in a very
limited number of cases because it is usually very difficult to recognize the pattern
in the first few terms of the sequence.

Method of Backward Substitutions This method of solving recurrence relations
works exactly as its name implies: using the recurrence relation in question, we
express x(n − 1) as a function of x(n − 2) and substitute the result into the original
equation to get x(n) as a function of x(n − 2). Repeating this step for x(n −
2) yields an expression of x(n) as a function of x(n − 3). For many recurrence
relations, we will then be able to see a pattern and express x(n) as a function of
x(n − i) for an arbitrary i = 1, 2, . . . . Selecting i to make n − i reach the initial
condition and using one of the standard summation formulas often leads to a
closed-end formula for the solution to the recurrence.

As an example, let us apply the method of backward substitutions to recur-
rence (B.1)–(B.2). Thus, we have the recurrence equation

x(n) = x(n − 1) + n.

Replacing n by n − 1 in the equation yields x(n − 1) = x(n − 2) + n − 1; after
substituting this expression for x(n − 1) in the initial equation, we obtain

x(n) = [x(n − 2) + n − 1] + n = x(n − 2) + (n − 1) + n.

Replacing n by n − 2 in the initial equation yields x(n − 2) = x(n − 3) + n − 2; after
substituting this expression for x(n − 2), we obtain

x(n) = [x(n − 3) + n − 2] + (n − 1) + n = x(n − 3) + (n − 2) + (n − 1) + n.
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Comparing the three formulas for x(n), we can see the pattern arising after i such
substitutions:1

x(n) = x(n − i) + (n − i + 1) + (n − i + 2) + . . . + n.

Since initial condition (B.2) is specified for n = 0, we need n − i = 0, i.e., i = n, to
reach it:

x(n) = x(0) + 1 + 2 + . . . + n = 0 + 1 + 2 + . . . + n = n(n + 1)/2.

The method of backward substitutions works surprisingly well for a wide
variety of simple recurrence relations. You can find many examples of its successful
applications throughout this book (see, in particular, Section 2.4 and its exercises).

Linear Second-Order Recurrences with Constant Coefficients An important
class of recurrences that can be solved by neither forward nor backward substitu-
tions are recurrences of the type

ax(n) + bx(n − 1) + cx(n − 2) = f (n), (B.7)

where a, b, and c are real numbers, a �= 0. Such a recurrence is called second-order
linear recurrence with constant coefficients. It is second-order because elements
x(n) and x(n − 2) are two positions apart in the unknown sequence in question; it
is linear because the left-hand side is a linear combination of the unknown terms
of the sequence; it has constant coefficients because of the assumption that a, b,
and c are some fixed numbers. If f (n) = 0 for every n, the recurrence is said to be
homogeneous; otherwise, it is called inhomogeneous.

Let us consider first the homogeneous case:

ax(n) + bx(n − 1) + cx(n − 2) = 0. (B.8)

Except for the degenerate situation of b = c = 0, equation (B.8) has infinitely many
solutions. All these solutions, which make up the general solution to (B.8), can be
obtained by one of the three formulas that follow. Which of the three formulas
applies to a particular case depends on the roots of the quadratic equation with
the same coefficients as recurrence (B.8):

ar2 + br + c = 0. (B.9)

Quadratic equation (B.9) is called the characteristic equation for recurrence
equation (B.8).

THEOREM 1 Let r1, r2 be two roots of characteristic equation (B.9) for recur-
rence relation (B.8).

1. Strictly speaking, the validity of the pattern’s formula needs to be proved by mathematical induction
on i. It is often easier, however, to get the solution first and then verify it (e.g., as we did for
x(n) = n(n + 1)/2).
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Case 1 If r1 and r2 are real and distinct, the general solution to recurrence
(B.8) is obtained by the formula

x(n) = αrn
1 + βrn

2 ,

where α and β are two arbitrary real constants.
Case 2 If r1 and r2 are equal to each other, the general solution to recurrence

(B.8) is obtained by the formula

x(n) = αrn + βnrn,

where r = r1 = r2 and α and β are two arbitrary real constants.
Case 3 If r1,2 = u ± iv are two distinct complex numbers, the general solution

to recurrence (B.8) is obtained as

x(n) = γ n[α cos nθ + β sin nθ ],

where γ =
√

u2 + v2, θ = arctan v/u, and α and β are two arbitrary real constants.

Case 1 of this theorem arises, in particular, in deriving the explicit formula for
the nth Fibonacci number (Section 2.5). First, we need to rewrite the recurrence
defining this sequence as

F(n) − F(n − 1) − F(n − 2) = 0.

Its characteristic equation is

r2 − r − 1 = 0,

with the roots

r1,2 = 1 ± √
1 − 4(−1)

2
= 1 ± √

5
2

.

Since this characteristic equation has two distinct real roots, we have to use the
formula indicated in Case 1 of Theorem 1:

F(n) = α

(
1 + √

5
2

)n

+ β

(
1 − √

5
2

)n

.

So far, we have ignored initial conditions F(0) = 0 and F(1) = 1. Now, we
take advantage of them to find specific values of constants α and β. We do this by
substituting 0 and 1—the values of n for which the initial conditions are given—
into the last formula and equating the results to 0 and 1, respectively:

F(0) = α

(
1 + √

5
2

)0

+ β

(
1 − √

5
2

)0

= 0,

F (1) = α

(
1 + √

5
2

)1

+ β

(
1 − √

5
2

)1

= 1.
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After some standard algebraic simplifications, we get the following system of two
linear equations in two unknowns α and β:

α + β = 0

(
1 + √

5
2

)
α +

(
1 − √

5
2

)
β = 1.

Solving the system (e.g., by substituting β = −α into the second equation and
solving the equation obtained for α), we get the values α = 1/

√
5 and β = −1/

√
5

for the unknowns. Thus,

F(n) = 1√
5

(
1 + √

5
2

)n

− 1√
5

(
1 − √

5
2

)n

= 1√
5
(φn − φ̂n),

where φ = (1 + √
5)/2 ≈ 1.61803 and φ̂ = −1/φ ≈ −0.61803.

As another example, let us solve the recurrence

x(n) − 6x(n − 1) + 9x(n − 2) = 0.

Its characteristic equation

r2 − 6r + 9 = 0

has two equal roots r1 = r2 = 3. Hence, according to Case 2 of Theorem 1, its
general solution is given by the formula

x(n) = α3n + βn3n.

If we want to find its particular solution for which, say, x(0) = 0 and x(1) =
3, we substitute n = 0 and n = 1 into the last equation to get a system of two
linear equations in two unknowns. Its solution is α = 0 and β = 1, and hence the
particular solution is

x(n) = n3n.

Let us now turn to the case of inhomogeneous linear second-order recurrences
with constant coefficients.

THEOREM 2 The general solution to inhomogeneous equation (B.7) can be
obtained as the sum of the general solution to the corresponding homogeneous
equation (B.8) and a particular solution to inhomogeneous equation (B.7).

Since Theorem 1 gives a complete recipe for finding the general solution to a
homogeneous second-order linear equation with constant coefficients, Theorem 2
reduces the task of finding all solutions to equation (B.7) to finding just one
particular solution to it. For an arbitrary function f (n) in the right-hand side
of equation (B.7), it is still a difficult task with no general help available. For
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a few simple classes of functions, however, a particular solution can be found.
Specifically, if f (n) is a nonzero constant, we can look for a particular solution
that is a constant as well.

As an example, let us find the general solution to the inhomogeneous recur-
rence

x(n) − 6x(n − 1) + 9x(n − 2) = 4.

If x(n) = c is its particular solution, constant c must satisfy the equation

c − 6c + 9c = 4,

which yields c = 1. Since we have already found above the general solution to the
corresponding homogeneous equation

x(n) − 6x(n − 1) + 9x(n − 2) = 0,

the general solution to x(n) − 6x(n − 1) + 9x(n − 2) = 4 is obtained by the formula

x(n) = α3n + βn3n + 1.

Before leaving this topic, we should note that the results analogous to those of
Theorems 1 and 2 hold for the general linear kth degree recurrence with constant
coefficients,

akx(n) + ak−1x(n − 1) + . . . + a0x(n − k) = f (n). (B.10)

The practicality of this generalization is limited, however, by the necessity of
finding roots of the kth degree polynomial

akr
k + ak−1r

k−1 + . . . + a0 = 0, (B.11)

which is the characteristic equation for recurrence (B.10).
Finally, there are several other, more sophisticated techniques for solving

recurrence relations. Purdom and Brown [Pur04] provide a particularly thorough
discussion of this topic from the analysis of algorithms perspective.

Common Recurrence Types in Algorithm Analysis

There are a few recurrence types that arise in the analysis of algorithms with
remarkable regularity. This happens because they reflect one of the fundamental
design techniques.

Decrease-by-One A decrease-by-one algorithm solves a problem by exploiting a
relationship between a given instance of size n and a smaller instance of size n − 1.
Specific examples include recursive evaluation of n!(Section 2.4) and insertion sort
(Section 4.1). The recurrence equation for investigating the time efficiency of such
algorithms typically has the following form:

T (n) = T (n − 1) + f (n), (B.12)
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where function f (n) accounts for the time needed to reduce an instance to a
smaller one and to extend the solution of the smaller instance to a solution of
the larger instance. Applying backward substitutions to (B.12) yields

T (n) = T (n − 1) + f (n)

= T (n − 2) + f (n − 1) + f (n)

= . . .

= T (0) +
n∑

j=1

f (j).

For a specific function f (x), the sum
∑n

j=1 f (j) can usually be either computed
exactly or its order of growth ascertained. For example, if f (n) = 1,

∑n
j=1 f (j) = n;

if f (n) = log n,
∑n

j=1 f (j) ∈ �(n log n); if f (n) = nk,
∑n

j=1 f (j) ∈ �(nk+1). The
sum

∑n
j=1 f (j) can also be approximated by formulas involving integrals (see, in

particular, the appropriate formulas in Appendix A).

Decrease-by-a-Constant-Factor A decrease-by-a-constant-factor algorithm
solves a problem by reducing its instance of size n to an instance of size n/b (b = 2
for most but not all such algorithms), solving the smaller instance recursively, and
then, if necessary, extending the solution of the smaller instance to a solution of
the given instance. The most important example is binary search; other examples
include exponentiation by squaring (introduction to Chapter 4), Russian peasant
multiplication, and the fake-coin problem (Section 4.4).

The recurrence equation for investigating the time efficiency of such algo-
rithms typically has the form

T (n) = T (n/b) + f (n), (B.13)

where b > 1 and function f (n) accounts for the time needed to reduce an instance
to a smaller one and to extend the solution of the smaller instance to a solution
of the larger instance. Strictly speaking, equation (B.13) is valid only for n = bk,

k = 0, 1, . . .. For values of n that are not powers of b, there is typically some round-
off, usually involving the floor and/or ceiling functions. The standard approach to
such equations is to solve them for n = bk first. Afterward, either the solution is
tweaked to make it valid for all n’s (see, for example, Problem 7 in Exercises 2.4),
or the order of growth of the solution is established based on the smoothness rule
(Theorem 4 in this appendix).

By considering n = bk, k = 0, 1, . . . , and applying backward substitutions to
(B.13), we obtain the following:
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T (bk) = T (bk−1) + f (bk)

= T (bk−2) + f (bk−1) + f (bk)

= . . .

= T (1) +
k∑

j=1

f (bj).

For a specific function f (x), the sum
∑k

j=1 f (bj) can usually be either computed
exactly or its order of growth ascertained. For example, if f (n) = 1,

k∑
j=1

f (bj) = k = logb n.

If f (n) = n, to give another example,

k∑
j=1

f (bj) =
k∑

j=1

bj = b
bk − 1
b − 1

= b
n − 1
b − 1

.

Also, recurrence (B.13) is a special case of recurrence (B.14) covered by the Master
Theorem (Theorem 5 in this appendix). According to this theorem, in particular,
if f (n) ∈ �(nd) where d > 0, then T (n) ∈ �(nd) as well.

Divide-and-Conquer A divide-and-conquer algorithm solves a problem by di-
viding its given instance into several smaller instances, solving each of them recur-
sively, and then, if necessary, combining the solutions to the smaller instances into
a solution to the given instance. Assuming that all smaller instances have the same
size n/b, with a of them being actually solved, we get the following recurrence valid
for n = bk, k = 1, 2, . . . :

T (n) = aT (n/b) + f (n), (B.14)

where a ≥ 1, b ≥ 2, and f (n) is a function that accounts for the time spent on
dividing the problem into smaller ones and combining their solutions. Recurrence
(B.14) is called the general divide-and-conquer recurrence.2

Applying backward substitutions to (B.14) yields the following:

2. In our terminology, for a = 1, it covers decrease-by-a-constant-factor, not divide-and-conquer,
algorithms.
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T (bk) = aT (bk−1) + f (bk)

= a[aT (bk−2) + f (bk−1)] + f (bk) = a2T (bk−2) + af (bk−1) + f (bk)

= a2[aT (bk−3) + f (bk−2)] + af (bk−1) + f (bk)

= a3T (bk−3) + a2f (bk−2) + af (bk−1) + f (bk)

= . . .

= akT (1) + ak−1f (b1) + ak−2f (b2) + . . . + a0f (bk)

= ak[T (1) +
k∑

j=1

f (bj)/aj ].

Since ak = alogb n = nlogb a, we get the following formula for the solution to recur-
rence (B.14) for n = bk:

T (n) = nlogb a[T (1) +
logb n∑
j=1

f (bj)/aj ]. (B.15)

Obviously, the order of growth of solution T (n) depends on the values of the
constants a and b and the order of growth of the function f (n). Under certain
assumptions about f (n) discussed in the next section, we can simplify formula
(B.15) and get explicit results about the order of growth of T (n).

Smoothness Rule and the Master Theorem We mentioned earlier that the time
efficiency of decrease-by-a-constant-factor and divide-and-conquer algorithms is
usually investigated first for n’s that are powers of b. (Most often b = 2, as it is
in binary search and mergesort; sometimes b = 3, as it is in the better algorithm
for the fake-coin problem of Section 4.4, but it can be any integer greater than or
equal to 2.) The question we are going to address now is when the order of growth
observed for n’s that are powers of b can be extended to all its values.

DEFINITION Let f (n) be a nonnegative function defined on the set of natural
numbers. f (n) is called eventually nondecreasing if there exists some nonnegative
integer n0 so that f (n) is nondecreasing on the interval [n0, ∞), i.e.,

f (n1) ≤ f (n2) for all n2 > n1 ≥ n0.

For example, the function (n − 100)2 is eventually nondecreasing, although it
is decreasing on the interval [0, 100], and the function sin2 πn

2 is a function that
is not eventually nondecreasing. The vast majority of functions we encounter in
the analysis of algorithms are eventually nondecreasing. Most of them are, in fact,
nondecreasing on their entire domains.

DEFINITION Let f (n) be a nonnegative function defined on the set of natural
numbers. f (n) is called smooth if it is eventually nondecreasing and

f (2n) ∈ �(f (n)).
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It is easy to check that functions which do not grow too fast, including log n,

n, n log n, and nα where α ≥ 0, are smooth. For example, f (n) = n log n is smooth
because

f (2n) = 2n log 2n = 2n(log 2 + log n) = (2 log 2)n + 2n log n ∈ �(n log n).

Fast-growing functions, such as an where a > 1 and n!, are not smooth. For exam-
ple, f (n) = 2n is not smooth because

f (2n) = 22n = 4n �∈ �(2n).

THEOREM 3 Let f (n) be a smooth function as just defined. Then, for any fixed
integer b ≥ 2,

f (bn) ∈ �(f (n)),

i.e., there exist positive constants cb and db and a nonnegative integer n0 such that

dbf (n) ≤ f (bn) ≤ cbf (n) for n ≥ n0.

(The same assertion, with obvious changes, holds for the O and � notations.)

PROOF We will prove the theorem for the O notation only; the proof of the �

part is the same. First, it is easy to check by induction that if f (2n) ≤ c2f (n) for
n ≥ n0, then

f (2kn) ≤ ck
2f (n) for k = 1, 2, . . . and n ≥ n0.

The induction basis for k = 1 checks out trivially. For the general case, assuming
that f (2k−1n) ≤ ck−1

2 f (n) for n ≥ n0, we obtain

f (2kn) = f (2 . 2k−1n) ≤ c2f (2k−1n) ≤ c2c
k−1
2 f (n) = ck

2f (n).

This proves the theorem for b = 2k.
Consider now an arbitrary integer b ≥ 2. Let k be a positive integer such that

2k−1 ≤ b < 2k. We can estimate f (bn) above by assuming without loss of generality
that f (n) is nondecreasing for n ≥ n0:

f (bn) ≤ f (2kn) ≤ ck
2f (n).

Hence, we can use ck
2 as a required constant for this value of b to complete the

proof.

The importance of the notions introduced above stems from the following
theorem.

THEOREM 4 (Smoothness Rule) Let T (n) be an eventually nondecreasing
function and f (n) be a smooth function. If

T (n) ∈ �(f (n)) for values of n that are powers of b,
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where b ≥ 2, then

T (n) ∈ �(f (n)).

(The analogous results hold for the cases of O and � as well.)

PROOF We will prove just the O part; the � part can be proved by the analogous
argument. By the theorem’s assumption, there exist a positive constant c and a
positive integer n0 = bk0 such that

T (bk) ≤ cf (bk) for bk ≥ n0,

T (n) is nondecreasing for n ≥ n0, and f (bn) ≤ cbf (n) for n ≥ n0 by Theorem 3.
Consider an arbitrary value of n, n ≥ n0. It is bracketed by two consecutive powers
of b: n0 ≤ bk ≤ n < bk+1. Therefore,

T (n) ≤ T (bk+1) ≤ cf (bk+1) = cf (bbk) ≤ ccbf (bk) ≤ ccbf (n).

Hence, we can use the product ccb as a constant required by the O(f (n)) definition
to complete the O part of the theorem’s proof.

Theorem 4 allows us to expand the information about the order of growth
established for T (n) on a convenient subset of values (powers of b) to its entire
domain. Here is one of the most useful assertions of this kind.

THEOREM 5 (Master Theorem) Let T (n) be an eventually nondecreasing func-
tion that satisfies the recurrence

T (n) = aT (n/b) + f (n) for n = bk, k = 1, 2, . . .

T (1) = c,

where a ≥ 1, b ≥ 2, c > 0. If f (n) ∈ �(nd) where d ≥ 0, then

T (n) ∈
⎧⎨
⎩

�(nd) if a < bd ,
�(nd log n) if a = bd ,
�(nlogb a) if a > bd .

(Similar results hold for the O and � notations, too.)

PROOF We will prove the theorem for the principal special case of f (n) = nd. (A
proof of the general case is a minor technical extension of the same argument—
see, e.g., [Cor09].) If f (n) = nd, equality (B.15) yields for n = bk, k = 0, 1, . . . ,

T (n) = nlogb a[T (1) +
logb n∑
j=1

bjd/aj ] = nlogb a[T (1) +
logb n∑
j=1

(bd/a)j ].

The sum in this formula is that of a geometric series, and therefore
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logb n∑
j=1

(bd/a)j = (bd/a)
(bd/a)logb n − 1

(bd/a) − 1
if bd �= a

and
logb n∑
j=1

(bd/a)j = logb n if bd = a.

If a < bd, then bd/a > 1, and therefore

logb n∑
j=1

(bd/a)j = (bd/a)
(bd/a)logb n − 1

(bd/a) − 1
∈ �((bd/a)logb n).

Hence, in this case,

T (n) = nlogb a[T (1) +
logb n∑
j=1

(bd/a)j ] ∈ nlogb a�((bd/a)logb n)

= �(nlogb a(bd/a)logb n) = �(alogb n(bd/a)logb n)

= �(bd logb n) = �(blogb nd

) = �(nd).

If a > bd, then bd/a < 1, and therefore

logb n∑
j=1

(bd/a)j = (bd/a)
(bd/a)logb n − 1

(bd/a) − 1
∈ �(1).

Hence, in this case,

T (n) = nlogb a[T (1) +
logb n∑
j=1

(bd/a)j ] ∈ �(nlogb a).

If a = bd, then bd/a = 1, and therefore

T (n) = nlogb a[T (1) +
logb n∑
j=1

(bd/a)j ] = nlogb a[T (1) + logb n]

∈ �(nlogb a logb n) = �(nlogb bd

logb n) = �(nd logb n).

Since f (n) = nd is a smooth function for any d ≥ 0, a reference to Theorem 4
completes the proof.

Theorem 5 provides a very convenient tool for a quick efficiency analysis of
divide-and-conquer and decrease-by-a-constant-factor algorithms. You can find
examples of such applications throughout the book.
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Hints to Exercises

CHAPTER 1

Exercises 1.1

1. It is probably faster to do this by searching the Web, but your library should
be able to help, too.

2. One can find arguments supporting either view. There is a well-established
principle pertinent to the matter, though: scientific facts or mathematical
expressions of them are not patentable. (Why do you think this is the case?)
But should this preclude granting patents for all algorithms?

3. You may assume that you are writing your algorithms for a human rather than
a machine. Still, make sure that your descriptions do not contain obvious am-
biguities. Knuth provides an interesting comparison between cooking recipes
and algorithms [KnuI, p. 6].

4. There is a quite straightforward algorithm for this problem based on the
definition of �√n�.

5. Try to design an algorithm that always makes less than mn comparisons.

6. a. Just follow Euclid’s algorithm as described in the text.

b. Compare the number of divisions made by the two algorithms.

7. Prove that if d divides both m and n (i.e., m = sd and n = td for some positive
integers s and t), then it also divides both n and r = m mod n and vice versa.

Use the formula m = qn + r (0 ≤ r < n) and the fact that if d divides two
integers u and v, it also divides u + v and u − v (why?).

8. Perform one iteration of the algorithm for two arbitrarily chosen integers
m < n.

9. The answer to part (a) can be given immediately, the answer to part (b) can
be given by checking the algorithm’s performance on all pairs 1 < m < n ≤ 10.
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10. a. Use the equality

gcd(m, n) = gcd(m − n, n) for m ≥ n > 0.

b. The key is to figure out the total number of distinct integers that can be
written on the board, starting with an initial pair m, n where m > n ≥ 1.
You should exploit a connection of this question to the question of part (a).
Considering small examples, especially those with n = 1 and n = 2, should
help, too.

11. Of course, for some coefficients, the equation will have no solutions.

12. Tracing the algorithm by hand for, say, n = 10 and studying its outcome should
help answering both questions.

Exercises 1.2

1. The farmer would have to make several trips across the river, starting with
the only one possible.

2. Unlike the Old World puzzle of Problem 1, the first move solving this puzzle
is not obvious.

3. The principal issue here is a possible ambiguity.

4. Your algorithm should work correctly for all possible values of the coefficients,
including zeros.

5. You almost certainly learned this algorithm in one of your introductory pro-
gramming courses. If this assumption is not true, you have a choice between
designing such an algorithm on your own or looking it up.

6. You may need to make a field trip to refresh your memory.

7. Question (a) is difficult, though the answer to it—discovered in the 1760s by
the German mathematician Johann Lambert—is well-known. By comparison,
question (b) is incomparably simpler.

8. You probably know two or more different algorithms for sorting an array of
numbers.

9. You can: decrease the number of times the inner loop is executed, make that
loop run faster (at least for some inputs), or, more significantly, design a faster
algorithm from scratch.

Exercises 1.3

1. Trace the algorithm on the input given. Use the definitions of stability and
being in-place that were introduced in the section.

2. If you do not recall any searching algorithms, you should design a simple
searching algorithm (without succumbing to the temptation to find one in the
latter chapters of the book).
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3. This algorithm is introduced later in the book, but you should have no trouble
designing it on your own.

4. If you have not encountered this problem in your previous courses, you may
look up the answers on the Web or in a discrete structures textbook. The
answers are, in fact, surprisingly simple.

5. No efficient algorithm for solving this problem for an arbitrary graph is known.
This particular graph does have Hamiltonian circuits that are not difficult to
find. (You need to find just one of them.)

6. a. Put yourself (mentally) in a passenger’s place and ask yourself what cri-
terion for the “best” route you would use. Then think of people that may
have different needs.

b. The representation of the problem by a graph is straightforward. Give some
thoughts, though, to stations where trains can be changed.

7. a. What are tours in the traveling salesman problem?

b. It would be natural to consider vertices colored the same color as elements
of the same subset.

8. Create a graph whose vertices represent the map’s regions. You will have to
decide on the edges on your own.

9. Assume that the circumference in question exists and find its center first. Also,
do not forget to give a special answer for n ≤ 2.

10. Be careful not to miss some special cases of the problem.

Exercises 1.4

1. a. Take advantage of the fact that the array is not sorted.

b. We used this trick in implementing one of the algorithms in Section 1.1.

2. a. For a sorted array, there is a spectacularly efficient algorithm you almost
certainly have heard about.

b. Unsuccessful searches can be made faster.

3. a. Push(x) puts x on the top of the stack; pop deletes the item from the top
of the stack.

b. Enqueue(x) adds x to the rear of the queue; dequeue deletes the item from
the front of the queue.

4. Just use the definitions of the graph properties in question and data structures
involved.

5. There are two well-known algorithms that can solve this problem. The first
uses a stack; the second uses a queue. Although these algorithms are discussed
later in the book, do not miss this chance to discover them by yourself!

6. The inequality h ≤ n − 1 follows immediately from the height’s definition. The
lower bound inequality follows from the inequality 2h+1 − 1 ≥ n, which can be
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proved by considering the largest number of vertices a binary tree of height
h can have.

7. You need to indicate how each of the three operations of the priority queue
will be implemented.

8. Because of insertions and deletions, using an array of the dictionary’s elements
(sorted or unsorted) is not the best implementation possible.

9. You need to know about postfix notation in order to answer one of these
questions. (If you are not familiar with it, find the information on the Internet.)

10. There are several algorithms for this problem. Keep in mind that the words
may contain multiple occurrences of the same letter.

CHAPTER 2

Exercises 2.1

1. The questions are indeed as straightforward as they appear, though some
of them may have alternative answers. Also, keep in mind the caveat about
measuring an integer’s size.

2. a. The sum of two matrices is defined as the matrix whose elements are the
sums of the corresponding elements of the matrices given.

b. Matrix multiplication requires two operations: multiplication and addition.
Which of the two would you consider basic and why?

3. Will the algorithm’s efficiency vary on different inputs of the same size?

4. a. Gloves are not socks: they can be right-handed and left-handed.

b. You have only two qualitatively different outcomes possible. Find the
number of ways to get each of the two.

5. a. First, prove that if a positive decimal integer n has b digits in its binary
representation, then

2b−1 ≤ n < 2b.

Then, take binary logarithms of the terms in these inequalities.
b. The proof is similar to the proof of formula (2.1).

c. The formulas will be the same, with just one small adjustment to account
for the different radix.

d. How can we switch from one logarithm base to another?

6. Insert a verification of whether the problem is already solved.

7. A similar question was investigated in the section.

8. Use either the difference between or the ratio of f (4n) and f (n), whichever
is more convenient for getting a compact answer. If it is possible, try to get an
answer that does not depend on n.
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9. If necessary, simplify the functions in question to single out terms defining
their orders of growth to within a constant multiple. (We discuss formal meth-
ods for answering such questions in the next section; however, the questions
can be answered without knowledge of such methods.)

10. a. Use the formula
∑n

i=0 2i = 2n+1 − 1.

b. Use the formula for the sum of the first n odd numbers or the formula for
the sum of arithmetic progression.

Exercises 2.2

1. Use the corresponding counts of the algorithm’s basic operation (see Sec-
tion 2.1) and the definitions of O, �, and �.

2. Establish the order of growth of n(n + 1)/2 first and then use the informal
definitions of O, �, and �. (Similar examples were given in the section.)

3. Simplify the functions given to single out the terms defining their orders of
growth.

4. a. Check carefully the pertinent definitions.

b. Compute the ratio limits of every pair of consecutive functions on the list.

5. First, simplify some of the functions. Then, use the list of functions in Table 2.2
to “anchor” each of the functions given. Prove their final placement by com-
puting appropriate limits.

6. a. You can prove this assertion either by computing an appropriate limit or
by applying mathematical induction.

b. Compute limn→∞ an
1/an

2 .

7. Prove the correctness of (a), (b), and (c) by using the appropriate definitions;
construct a counterexample for (d) (e.g., by constructing two functions behav-
ing differently for odd and even values of their arguments).

8. The proof of part (a) is similar to the one given for the theorem’s assertion
in Section 2.2. Of course, different inequalities need to be used to bound the
sum from below.

9. Follow the analysis plan used in the text when the algorithm was mentioned
for the first time.

10. You may use straightforward algorithms for all the four questions asked. Use
the O notation for the time efficiency class of one of them, and the � notation
for the three others.

11. The problem can be solved in two weighings.

12. You should walk intermittently left and right from your initial position until
the door is reached.
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Exercises 2.3

1. Use the common summation formulas and rules listed in Appendix A. You
may need to perform some simple algebraic operations before applying them.

2. Find a sum among those in Appendix A that looks similar to the sum in
question and try to transform the latter to the former. Note that you do not
have to get a closed-form expression for a sum before establishing its order
of growth.

3. Just follow the formulas in question.

4. a. Tracing the algorithm to get its output for a few small values of n (e.g.,
n = 1, 2, and 3) should help if you need it.

b. We faced the same question for the examples discussed in this section. One
of them is particularly pertinent here.

c. Follow the plan outlined in the section.

d. As a function of n, the answer should follow immediately from your answer
to part (c). You may also want to give an answer as a function of the number
of bits in the n’s representation (why?).

e. Have you not encountered this sum somewhere?

5. a. Tracing the algorithm to get its output for a few small values of n (e.g.,
n = 1, 2, and 3) should help if you need it.

b. We faced the same question for the examples discussed in the section. One
of them is particularly pertinent here.

c. You can either follow the section’s plan by setting up and computing a sum
or answer the question directly. (Try to do both.)

d. Your answer will immediately follow from the answer to part (c).

e. Does the algorithm always have to make two comparisons on each itera-
tion? This idea can be developed further to get a more significant improve-
ment than the obvious one—try to do it for a four-element array and then
generalize the insight. But can we hope to find an algorithm with a better
than linear efficiency?

6. a. Elements A[i, j ] and A[j, i] are symmetric with respect to the main diag-
onal of the matrix.

b. There is just one candidate here.

c. You may investigate the worst case only.

d. Your answer will immediately follow from the answer to part (c).

e. Compare the problem the algorithm solves with the way it does this.

7. Computing a sum of n numbers can be done with n − 1 additions. How many
does the algorithm make in computing each element of the product matrix?

8. Set up a sum for the number of times all the doors are toggled and find its
asymptotic order of growth by using some formulas from Appendix A.
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9. For the general step of the proof by induction, use the formula

n+1∑
i=1

i =
n∑

i=1

i + (n + 1).

The young Gauss computed the sum 1 + 2 + . . . + 99 + 100 by noticing that
it can be computed as the sum of 50 pairs, each with the same sum.

10. There are at least two different ways to solve this problem, which comes from
a collection of Wall Street interview questions.

11. a. Setting up a sum should pose no difficulties. Using the standard summation
formulas and rules will require more effort than in the previous examples,
however.

b. Optimize the algorithm’s innermost loop.

12. Set up a sum for the number of squares after n iterations of the algorithm and
then simplify it to get a closed-form answer.

13. To derive a formula expressing the total number of digits as a function of
the number of pages n, where 1 ≤ n ≤ 1000, it is convenient to partition the
function’s domain into several natural intervals.

Exercises 2.4

1. Each of these recurrences can be solved by the method of backward substitu-
tions.

2. The recurrence relation in question is almost identical to the recurrence
relation for the number of multiplications, which was set up and solved in
the section.

3. a. The question is similar to that about the efficiency of the recursive algo-
rithm for computing n!.

b. Write pseudocode for the nonrecursive algorithm and determine its effi-
ciency.

4. a. Note that you are asked here about a recurrence for the function’s values,
not about a recurrence for the number of times its operation is executed.
Just follow the pseudocode to set it up. It is easier to solve this recurrence
by forward substitutions (see Appendix B).

b. This question is very similar to one we have already discussed.

c. You may want to include the subtractions needed to decrease n.

5. a. Use the formula for the number of disk moves derived in the section.

b. Solve the problem for three disks to investigate the number of moves made
by each of the disks. Then generalize the observations and prove their
validity for the general case of n disks.



510 Hints to Exercises

6. The required algorithm and the method of its analysis are similar to those of
the classic version of the puzzle. Because of the additional constraint, more
than two smaller instances of the puzzle need to be solved here.

7. a. Consider separately the cases of even and odd values of n and show that
for both of them �log2 n� satisfies the recurrence relation and its initial
condition.

b. Just follow the algorithm’s pseudocode.

8. a. Use the formula 2n = 2n−1 + 2n−1 without simplifying it; do not forget to
provide a condition for stopping your recursive calls.

b. A similar algorithm was investigated in the section.

c. A similar question was investigated in the section.

d. A bad efficiency class of an algorithm by itself does not mean that the
algorithm is bad. For example, the classic algorithm for the Tower of Hanoi
puzzle is optimal despite its exponential-time efficiency. Therefore, a claim
that a particular algorithm is not good requires a reference to a better one.

9. a. Tracing the algorithm for n = 1 and n = 2 should help.

b. It is very similar to one of the examples discussed in the section.

10. Get the basic operation count either by solving a recurrence relation or by
computing directly the number of the adjacency matrix elements the algo-
rithm checks in the worst case.

11. a. Use the definition’s formula to get the recurrence relation for the number
of multiplications made by the algorithm.

b. Investigate the right-hand side of the recurrence relation. Computing the
first few values of M(n) may be helpful, too.

12. You might want to use the neighborhood’s symmetry to obtain a simple
formula for the number of squares added to the neighborhood on the nth
iteration of the algorithm.

13. The minimum amount of time needed to fry three hamburgers is smaller than
4 minutes.

14. Solve first a simpler version in which a celebrity must be present.

Exercises 2.5

1. Use a search engine.

2. Set up an equation expressing the number of rabbits after n months in terms
of the number of rabbits in some previous months.

3. There are several ways to solve this problem. The most elegant of them makes
it possible to put the problem in this section.

4. Writing down the first, say, ten Fibonacci numbers makes the pattern obvious.
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5. It is easier to substitute φn and φ̂n into the recurrence equation separately.

Why will this suffice?

6. Use an approximate formula for F(n) to find the smallest values of n to exceed
the numbers given.

7. Set up the recurrence relations for C(n) and Z(n), with appropriate initial
conditions, of course.

8. All the information needed on each iteration of the algorithm is the values of
the last two consecutive Fibonacci numbers. Modify the algorithm Fib(n) to
take advantage of this fact.

9. Prove it by mathematical induction.

10. Consider first a small example such as computing gcd(13, 8).

11. Take advantage of the special nature of the rectangle’s dimensions.

12. The last k digits of an integer N can be obtained by computing N mod 10k. Per-
forming all operations of your algorithms modulo 10k (see Appendix A) will
enable you to circumvent the exponential growth of the Fibonacci numbers.
Also note that Section 2.6 is devoted to a general discussion of the empirical
analysis of algorithms.

Exercises 2.6

1. Does it return a correct comparison count for every array of size 2?

2. Debug your comparison counting and random input generating for small
array sizes first.

3. On a reasonably fast desktop, you may well get zero time, at least for smaller
sizes in your sample. Section 2.6 mentions a trick for overcoming this difficulty.

4. Check how fast the count values grow with doubling the input size.

5. A similar question was discussed in the section.

6. Compare the values of the functions lg lg n and lg n for n = 2k.

7. Insert the division counter in a program implementing the algorithm and run
it for the input pairs in the range indicated.

8. Get the empirical data for random values of n in a range of, say, between 102

and 104 or 105 and plot the data obtained. (You may want to use different
scales for the axes of your coordinate system.)

CHAPTER 3

Exercises 3.1

1. a. Think of algorithms that have impressed you with their efficiency and/or so-
phistication. Neither characteristic is indicative of a brute-force algorithm.
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b. Surprisingly, it is not a very easy question to answer. Mathematical prob-
lems (including those you’ve studied in your secondary school and college
courses) are a good source of such examples.

2. a. The first question was all but answered in the section. Expressing the
answer as a function of the number of bits can be done by using the formula
relating the two metrics.

b. How can we compute (ab) mod m?

3. It helps to have done the exercises in question.

4. a. The most straightforward algorithm, which is based on substituting x0 into
the formula, is quadratic.

b. Analyzing what unnecessary computations the quadratic algorithm does
should lead you to a better (linear) algorithm.

c. How many coefficients does a polynomial of degree n have? Can one
compute its value at an arbitrary point without processing all of them?

5. For each of the three network topologies, what properties of the matrix should
the algorithm check?

6. The answer to four of the questions is yes.

7. a. Just apply the brute-force thinking to the problem in question.

b. The problem can be solved in one weighing.

8. Just trace the algorithm on the input given. (It was done for another input in
the section.)

9. Although the majority of elementary sorting algorithms are stable, do not
rush with your answer. A general remark about stability made in Section 1.3,
where the notion of stability is introduced, could be helpful, too.

10. Generally speaking, implementing an algorithm for a linked list poses prob-
lems if the algorithm requires accessing the list’s elements not in sequential
order.

11. Just trace the algorithm on the input given. (See an example in the section.)

12. a. A list is sorted if and only if all its adjacent elements are in a correct order.
Why?

b. Add a boolean flag to register the presence or absence of switches.

c. Identify worst-case inputs first.

13. Can bubblesort change the order of two equal elements in its input?

14. Thinking about the puzzle as a sorting-like problem may or may not lead you
to the most simple and efficient solution.

Exercises 3.2

1. Modify the analysis of the algorithm’s version in Section 2.1.

2. As a function of p, what kind of function is Cavg?
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3. Solve a simpler problem with a single gadget first. Then design a better than
linear algorithm for the problem with two gadgets.

4. The content of this quote from Mahatma Gandhi is more thought provoking
than this drill.

5. For each input, one iteration of the algorithm yields all the information you
need to answer the question.

6. It will suffice to limit your search for an example to binary texts and patterns.

7. The answer, surprisingly, is yes.

8. a. For a given occurrence of A in the text, what are the substrings you need
to count?

b. For a given occurrence of B in the text, what are the substrings you need
to count?

9. You may use either bit strings or a natural-language text for the visualization
program. It would be a good idea to implement, as an option, a search for all
occurrences of a given pattern in a given text.

10. Test your program thoroughly. Be especially careful about the possibility of
words read diagonally with wrapping around the table’s border.

11. A (very) brute-force algorithm can simply shoot at adjacent feasible cells
starting at, say, one of the corners of the board. Can you suggest a better
strategy? (You can investigate relative efficiencies of different strategies by
making two programs implementing them play each other.) Is your strategy
better than the one that shoots at randomly generated cells of the opponent’s
board?

Exercises 3.3

1. You may want to consider two versions of the answer: without taking into
account the comparison and assignments in the algorithm’s innermost loop
and with them.

2. Sorting n real numbers can be done in O(n log n) time.

3. a. Solving the problem for n = 2 and n = 3 should lead you to the critical
insight.

b. Where would you put the post office if it did not have to be at one of the
village locations?

4. a. Check requirements (i)–(iii) by using basic properties of absolute values.

b. For the Manhattan distance, the points in question are defined by the
equation |x − 0| + |y − 0| = 1. You can start by sketching the points in
the positive quadrant of the coordinate system (i.e., the points for which
x, y ≥ 0) and then sketch the rest by using the symmetries.

c. The assertion is false. You can choose, say, p1(0, 0) and p2(1, 0) and find p3
to complete a counterexample.
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5. a. Prove that the Hamming distance does satisfy the three axioms of a dis-
tance metric.

b. Your answer should include two parameters.

6. True; prove it by mathematical induction.

7. Your answer should be a function of two parameters: n and k. A special case
of this problem (for k = 2) is solved in the text.

8. Review the examples given in the section.

9. Some of the extreme points of a convex hull are easier to find than others.

10. If there are other points of a given set on the straight line through pi and pj ,
which of all these points need to be preserved for further processing?

11. Your program should work for any set of n distinct points, including sets with
many collinear points.

12. a. The set of points satisfying inequality ax + by ≤ c is the half-plane of the
points on one side of the straight line ax + by = c, including all the points
on the line itself. Sketch such a half-plane for each of the inequalities and
find their intersection.

b. The extreme points are the vertices of the polygon obtained in part (a).

c. Compute and compare the values of the objective function at the extreme
points.

Exercises 3.4

1. a. Identify the algorithm’s basic operation and count the number of times it
will be executed.

b. For each of the time amounts given, find the largest value of n for which
this limit won’t be exceeded.

2. How different is the traveling salesman problem from the problem of finding
a Hamiltonian circuit?

3. Your algorithm should check the well-known condition that is both necessary
and sufficient for the existence of an Eulerian circuit in a connected graph.

4. Generate the remaining 4!− 6 = 18 possible assignments, compute their costs,
and find the one with the minimal cost.

5. Make the size of your counterexample as small as possible.

6. Rephrase the problem so that the sum of elements in one subset, rather than
two, needs to be checked on each try of a possible partition.

7. Follow the definitions of a clique and of an exhaustive-search algorithm.

8. Try all possible orderings of the elements given.

9. Use common formulas of elementary combinatorics.

10. a. Add all the elements in the magic square in two different ways.

b. What combinatorial objects do you have to generate here?
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11. a. For testing, you may use alphametic collections available on the Internet.

b. Given the absence of electronic computers in 1924, you must refrain here
from using the Internet.

Exercises 3.5

1. a. Use the definitions of the adjacency matrix and adjacency lists given in
Section 1.4.

b. Perform the DFS traversal the same way it is done for another graph in the
text (see Figure 3.10).

2. Compare the efficiency classes of the two versions of DFS for sparse graphs.

3. a. What is the number of such trees equal to?

b. Answer this question for connected graphs first.

4. Perform the BFS traversal the same way it is done in the text (see Figure 3.11).

5. You may use the fact that the level of a vertex in a BFS tree indicates the
number of edges in the shortest (minimum-edge) path from the root to that
vertex.

6. a. What property of a BFS forest indicates a cycle’s presence? (The answer
is similar to the one for a DFS forest.)

b. The answer is no. Find two examples supporting this answer.

7. Given the fact that both traversals can reach a new vertex if and only if it is
adjacent to one of the previously visited vertices, which vertices will be visited
by the time either traversal halts (i.e., its stack or queue becomes empty)?

8. Use a DFS forest and a BFS forest for parts (a) and (b), respectively.

9. Use either DFS or BFS.

10. a. Follow the instructions of the problem’s statement.

b. Trying both traversals should lead you to a correct answer very fast.

11. You can apply BFS without an explicit sketch of a graph representing the
states of the puzzle.

CHAPTER 4

Exercises 4.1

1. Solve the problem for n = 1.

2. You may consider pouring soda from a filled glass into an empty glass as one
move.

3. It’s easier to use the bottom-up approach.

4. Use the fact that all the subsets of an n-element set S = {a1, . . . , an} can be
divided into two groups: those that contain an and those that do not.

5. The answer is no.
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6. Use the same idea that underlies insertion sort.

7. Trace the algorithm as we did in the text for another input (see Figure 4.4).

8. a. The sentinel should stop the smallest element from moving beyond the first
position in the array.

b. Repeat the analysis performed in the text for the sentinel version.

9. Recall that one can access elements of a singly linked list only sequentially.

10. Compare the running times of the algorithm’s inner loop.

11. a. Answering the questions for an array of three elements should lead to the
general answers.

b. Assume for simplicity that all elements are distinct and that inserting A[i]
in each of the i + 1 possible positions among its predecessors is equally
likely. Analyze the sentinel version of the algorithm first.

12. a. Note that it’s more convenient to sort sublists in parallel, i.e., compare A[0]
with A[hi], then A[1] with A[1 + hi], and so on.

b. Recall that, generally speaking, sorting algorithms that can exchange ele-
ments far apart are not stable.

Exercises 4.2

1. Trace the algorithm as it is done in the text for another digraph (see Figure 4.7).

2. a. You need to prove two assertions: (i) if a digraph has a directed cycle, then
the topological sorting problem does not have a solution; (ii) if a digraph
has no directed cycles, then the problem has a solution.

b. Consider an extreme type of a digraph.

3. a. How does it relate to the time efficiency of DFS?

b. Do you know the length of the list to be generated by the algorithm? Where
should you put, say, the first vertex being popped off a DFS traversal stack
for the vertex to be in its final position?

4. Try to do this for a small example or two.

5. Trace the algorithm on the instances given as it is done in the section (see
Figure 4.8).

6. a. Use a proof by contradiction.

b. If you have difficulty answering the question, consider an example of a
digraph with a vertex with no incoming edges and write down its adjacency
matrix.

c. The answer follows from the definitions of the source and adjacency lists.

7. For each vertex, store the number of edges entering the vertex in the remain-
ing subgraph. Maintain a queue of the source vertices.

9. a. Trace the algorithm on the input given by following the steps of the algo-
rithm as indicated.
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b. Determine the efficiency for each of the three principal steps of the al-
gorithm and then determine the overall efficiency. Of course, the answers
depend on whether a digraph is represented by its adjacency matrix or by
its adjacency lists.

10. Take advantage of topological sorting and the graph’s symmetry.

Exercises 4.3

1. Use standard formulas for the numbers of these combinatorial objects. For the
sake of simplicity, you may assume that generating one combinatorial object
takes the same time as, say, one assignment.

2. We traced the algorithms on smaller instances in the section.

3. See an outline of this algorithm in the section.

4. a. Trace the algorithm for n = 2; take advantage of this trace in tracing the
algorithm for n = 3 and then use the latter for n = 4.

b. Show that the algorithm generates n!permutations and that all of them are
distinct. Use mathematical induction.

c. Set up a recurrence relation for the number of swaps made by the algo-
rithm. Find its solution and the solution’s order of growth. You may need
the formula: e ≈∑n

i=0
1
i! for large values of n.

5. We traced both algorithms on smaller instances in the section.

6. Tricks become boring after they have been given away.

7. This is not a difficult exercise because of the obvious way of getting bit strings
of length n from bit strings of length n − 1.

8. You may still mimic the binary addition without using it explicitly.

9. Just trace the algorithms for n = 4.

10. There are several decrease-and–conquer algorithms for this problem. They
are more subtle than one might expect. Generating combinations in a pre-
defined order (increasing, decreasing, lexicographic) helps with both a
design and a correctness proof. The following simple property is very help-
ful in that regard. Assuming with no loss of generality that the underlying
set is {1, 2, . . . , n}, there are

(
n−i
k−1

)
k-subsets whose smallest element is i,

i = 1, 2, . . . , n − k + 1.

11. Represent the disk movements by flipping bits in a binary n-tuple.

12. Thinking about the switches as bits of a bit string could be helpful but not
necessary.

Exercises 4.4

1. Take care of the length of the longest piece present.
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2. If the instance of size n is to compute �log2 n�, what is the instance of size n/2?
What is the relationship between the two?

3. For part (a), take advantage of the formula that gives the immediate answer.
The most efficient prop for answering questions (b)–(d) is a binary search tree
that mirrors the algorithm’s operations in searching for an arbitrary search
key.

4. Estimate the ratio of the average number of key comparisons made by se-
quential search to the average number made by binary search in successful
searches.

5. How would you reach the middle element in a linked list?

6. a. Use the comparison K ≤ A[m] where m ← �(l + r)/2� until l = r. Then
check whether the search is successful or not.

b. The analysis is almost identical to that of the text’s version of binary search.

7. Number the pictures and use this numbering in your questions.

8. The algorithm is quite similar to binary search, of course. In the worst case,
how many key comparisons does it make on each iteration and what fraction
of the array remains to be processed?

9. Start by comparing the middle element A[m] with m + 1.

10. It is obvious how one needs to proceed if n mod 3 = 0 or n mod 3 = 1; it is
somewhat less so if n mod 3 = 2.

11. a. Trace the algorithm for the numbers given as it is done in the text for
another input (see Figure 4.14b).

b. How many iterations does the algorithm perform?

12. You may implement the algorithm either recursively or nonrecursively.

13. The fastest way to answer the question is to use the formula that exploits the
binary representation of n, which is mentioned at the end of the section.

14. Use the binary representation of n.

15. a. Use forward substitutions (see Appendix B) into the recurrence equations
given in the text.

b. On observing the pattern in the first 15 values of n obtained in part (a),
express it analytically. Then prove its validity by mathematical induction.

c. Start with the binary representation of n and translate into binary the
formula for J (n) obtained in part (b).

Exercises 4.5

1. a. The answer follows immediately from the formula underlying Euclid’s
algorithm.

b. Let r = m mod n. Investigate two cases of r’s value relative to n’s value.
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2. Trace the algorithm on the input given, as is done in the section for another
input.

3. The nonrecursive version of the algorithm was applied to a particular instance
in the section’s example.

4. Write an equation of the straight line through the points (l, A[l]) and (r, A[r])
and find the x coordinate of the point on this line whose y coordinate is v.

5. Construct an array for which interpolation search decreases the remaining
subarray by one element on each iteration.

6. a. Solve the inequality log2 log2 n + 1 > 6.

b. Compute limn→∞
log log n

log n
. Note that to within a constant multiple, one can

consider the logarithms to be natural, i.e., base e.

7. a. The definition of the binary search tree suggests such an algorithm.

b. What is the worst-case input for your algorithm? How many key compar-
isons does it make on such an input?

8. a. Consider separately three cases, (i) the key’s node is a leaf, (ii) the key’s
node has one child, (iii) the key’s node has two children.

b. Assume that you know a location of the key to be deleted.

9. Starting at an arbitrary vertex of the graph, traverse a sequence of its untra-
versed edges until either all the edges are traversed or no untraversed edge is
available.

10. Follow the plan used in the section for analyzing the normal version of the
game.

11. Play several rounds of the game on the graph paper to become comfortable
with the problem. Considering special cases of the spoiled square’s location
should help you to solve it.

12. Do yourself a favor: try to design an algorithm on your own. It does not have
to be optimal, but it should be reasonably efficient.

13. Start by comparing the search number with the last element in the first row.

CHAPTER 5

Exercises 5.1

1. In more than one respect, this question is similar to the divide-and-conquer
computation of the sum of n numbers.

2. Unlike Problem 1, a divide-and-conquer algorithm for this problem can be
more efficient by a constant factor than the brute-force algorithm.

3. How would you compute a8 by solving two exponentiation problems of size
4? How about a9?
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4. Look at the notations used in the theorem’s statement.

5. Apply the Master Theorem.

6. Trace the algorithm as it was done for another input in the section.

7. How can mergesort reverse a relative ordering of two elements?

8. a. Use backward substitutions, as usual.

b. What inputs minimize the number of key comparisons made by mergesort?
How many comparisons are made by mergesort on such inputs during the
merging stage?

c. Do not forget to include key moves made both before the split and during
the merging.

9. Modify mergesort to solve the problem.

11. A divide-and-conquer algorithm works by reducing a problem’s instance to
several smaller instances of the same problem.

Exercises 5.2

1. We traced the algorithm on another instance in the section.

2. Use the rules for stopping the scans.

3. The definition of stability of a sorting algorithm was given in Section 1.3. Your
example does not have to be large.

4. Trace the algorithm to see on which inputs index i gets out of bounds.

5. Study what the section’s version of quicksort does on such arrays. You should
base your answers on the number of key comparisons, of course.

6. Where will splits occur on the inputs in question?

7. a. Computing the ratio n2/(n log2 n) for n = 106 is incorrect.

b. Think the best-case and worst-case inputs.

8. Use the partition idea.

9. a. You may want to first solve the two-color flag problem, i.e., rearrange
efficiently an array of R’s and B’s. (A similar problem is Problem 8 in this
section’s exercises.)

b. Extend the definition of a partition.

11. Use the partition idea.

Exercises 5.3

1. The problem is almost identical to the one discussed in the section.

2. Trace the algorithm on a small input.

3. This can be done by an algorithm discussed in an earlier chapter of the book.

4. Use strong induction on the number of internal nodes.
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5. This is a standard exercise that you have probably done in your data struc-
tures course. With the traversal definitions given at the end of the section,
you should be able to trace them even if you have never encountered these
algorithms before.

6. Your pseudocode can simply mirror the traversal definition.

7. If you do not know the answer to this important question, you may want to
check the results of the traversals on a small binary search tree. For a proof,
answer this question: What can be said about two nodes with keys k1 and k2 if
k1 < k2?

8. Find the root’s label of the binary tree first, and then identify the labels of the
nodes in its left and right subtrees.

9. Use strong induction on the number of internal nodes.

11. Breaking the chocolate bar can be represented by a binary tree.

Exercises 5.4

1. You might want to answer the question for n = 2 first and then generalize it.

2. Trace the algorithm on the input given. You will have to use it again in order
to compute the products of two-digit numbers as well.

3. a. Take logarithms of both sides of the equality.

b. What did we use the closed-form formula for?

4. a. How do we multiply by powers of 10?

b. Try to repeat the argument for, say, 98 ∗ 76.

5. Counting the number of one-digit additions made by the pen-and-pencil al-
gorithm in multiplying, say, two four-digit numbers, should help answer the
general question.

6. Check the formulas by simple algebraic manipulations.

7. Trace Strassen’s algorithm on the input given. (It takes some work, but it
would have been much more of it if you were asked to stop the recursion when
n = 1.) It is a good idea to check your answer by multiplying the matrices by
the brute-force (definition-based) algorithm, too.

8. Use the method of backward substitutions to solve the recurrence given in
the text.

9. The recurrence for the number of multiplications in Pan’s algorithm is similar
to that for Strassen’s algorithm. Use the Master Theorem to find the order of
growth of its solution.

Exercises 5.5

1. a. How many points need to be considered in the combining-solutions stage
of the algorithm?
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b. Design a simpler algorithm in the same efficiency class.

2. Divide the rectangle in Figure 5.7b into eight congruent rectangles and show
that each of these rectangles can contain no more than one point of interest.

3. Recall (see Section 5.1) that the number of comparisons made by mergesort
in the worst case is Cworst(n) = n log2 n − n + 1 (for n = 2k). You may use just
the highest-order term of this formula in the recurrence you need to set up.

6. The answer to part (a) comes directly from a textbook on plane geometry.

7. Use the formula relating the value of a determinant with the area of a triangle.

8. It must be in �(n), of course. (Why?)

9. Design a sequence of n points for which the algorithm decreases the problem’s
size just by 1 on each of its recursive calls.

11. Apply an idea used in this section to construct a decagon with its vertices at
ten given points.

12. The path cannot cross inside the fenced area, but it can go along the fence.

CHAPTER 6

Exercises 6.1

1. This problem is similar to one of the examples in the section.

2. a. Compare every element in one set with all the elements in the other.

b. In fact, you can use presorting in three different ways: sort elements of
just one of the sets, sort elements of each of the sets separately, and sort
elements of the two sets together.

3. a. How do we find the smallest and largest elements in a sorted list?

b. The brute-force algorithm and the divide-and-conquer algorithm are both
linear.

4. Use the known results about the average-case comparison numbers of the
algorithms in this question.

5. a. The problem is similar to one of the preceding problems in these exercises.

b. How would you solve this problem if the student information were written
on index cards? Better yet, think how somebody else, who has never taken
a course on algorithms but possesses a good dose of common sense, would
solve this problem.

6. a. Many problems of this kind have exceptions for one particular configura-
tion of points. As to the question about a solution’s uniqueness, you can get
the answer by considering a few small “random” instances of the problem.

b. Construct a polygon for a few small “random” instances of the problem.
Try to construct polygons in some systematic fashion.
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7. It helps to think about real numbers as ordered points on the real line. Con-
sidering the special case of s = 0, with a given array containing both negative
and positive numbers, might be helpful, too.

8. After sorting the ai’s and bi’s, the problem can be solved in linear time.

9. Start by sorting the number list given.

10. a. Sort the points in nondecreasing order of their x coordinates and then scan
them right to left.

b. Think of choice problems with two desirable characteristics to take into
account.

11. Use the presorting idea twice.

Exercises 6.2

1. Trace the algorithm as we did in solving another system in the section.

2. a. Use the Gaussian elimination results as explained in the text.

b. It is one of the varieties of the transform-and-conquer technique. Which
one?

3. To find the inverse, you can either solve the system with three simultaneous
right-hand side vectors representing the columns of the 3 × 3 identity matrix
or use the LU decomposition of the system’s coefficient matrix found in
Problem 2.

4. Though the final answer is correct, its derivation contains an error you have
to find.

5. Pseudocode of this algorithm is quite straightforward. If you are in doubt,
see the section’s example tracing the algorithm. The order of growth of the
algorithm’s running time can be found by following the standard plan for the
analysis of nonrecursive algorithms.

6. Estimate the ratio of the algorithm running times by using the approximate
formulas for the number of divisions and the number of multiplications in
both algorithms.

7. a. This is a “normal” case: one of the two equations should not be propor-
tional to the other.

b. The coefficients of one equation should be the same or proportional to the
corresponding coefficients of the other equation, whereas the right-hand
sides should not.

c. The two equations should be either the same or proportional to each other
(including the right-hand sides).

8. a. Manipulate the matrix rows above a pivot row the same way the rows below
the pivot row are changed.

b. Are the Gauss-Jordan method and Gaussian elimination based on the same
algorithm design technique or on different ones?
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c. Derive a formula for the number of multiplications in the Gauss-Jordan
method in the same manner this was done for Gaussian elimination in the
section.

9. How long will it take to compute the determinant compared to the time
needed to apply Gaussian elimination to the system?

10. a. Apply Cramer’s rule to the system given.

b. How many distinct determinants are there in the Cramer’s rule formulas?

11. a. If xij is the number of times the panel in the ith row and j th column needs
to be toggled in a solution, what can be said about xij? After you answer
this question, show that the binary matrix representing an initial state of the
board can be represented as a linear combination (in modulo-2 arithmetic)
of n2 binary matrices each representing the effect of toggling an individual
panel.

b. Set up a system of four equations in four unknowns (see part (a)) and
solve it by Gaussian elimination, performing all operations in modulo-2
arithmetic.

c. If you believe that a system of nine equations in nine unknowns is too large
to solve by hand, write a program to solve the problem.

Exercises 6.3

1. Use the definition of AVL trees. Do not forget that an AVL tree is a special
case of a binary search tree.

2. For both questions, it is easier to construct the required trees bottom up, i.e.,
for smaller values of n first.

3. The single L-rotation and the double RL-rotation are the mirror images of the
single R-rotation and the double LR-rotation, whose diagrams can be found
in the section.

4. Insert the keys one after another doing appropriate rotations the way it was
done in the section’s example.

5. a. An efficient algorithm immediately follows from the definition of the bi-
nary search tree of which the AVL tree is a special case.

b. The correct answer is opposite to the one that immediately comes to mind.

7. a. Trace the algorithm for the input given (see Figure 6.8 for an example).

b. Keep in mind that the number of key comparisons made in searching for a
key in a 2-3 tree depends not only on its node’s depth but also on whether
the key is the first or second one in the node.

8. False; find a simple counterexample.

9. Where will the smallest and largest keys be located?
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Exercises 6.4

1. a. Trace the algorithm outlined in the text on the input given.

b. Trace the algorithm outlined in the text on the input given.

c. A mathematical fact may not be established by checking its validity on a
single example.

2. For a heap represented by an array, only the parental dominance requirement
needs to be checked.

3. a. What structure does a complete tree of height h with the largest number
of nodes have? What about a complete tree with the smallest number of
nodes?

b. Use the results established in part (a).

4. First, express the right-hand side as a function of h. Then, prove the obtained
equality by either using the formula for the sum

∑
i2i given in Appendix A

or by mathematical induction on h.

5. a. Where in a heap should one look for its smallest element?

b. Deleting an arbitrary element of a heap can be done by generalizing the
algorithm for deleting its root.

6. Fill in a table with the time efficiency classes of efficient implementations
of the three operations: finding the largest element, finding and deleting the
largest element, and adding a new element.

7. Trace the algorithm on the inputs given (see Figure 6.14 for an example).

8. As a rule, sorting algorithms that can exchange far-apart elements are not
stable.

9. One can claim that the answers are different for the two principal represen-
tations of a heap.

10. This algorithm is less efficient than heapsort because it uses the array rather
than the heap to implement the priority queue.

12. Pick the spaghetti rods up in a bundle and place them end down (i.e., verti-
cally) onto a tabletop.

Exercises 6.5

1. Set up sums and simplify them by using the standard formulas and rules for
sum manipulation. Do not forget to include the multiplications outside the
inner loop.

2. Take advantage of the fact that the value of xi can be easily computed from
the previously computed xi−1.

3. a. Use the formulas for the number of multiplications (and additions) for
both algorithms.

b. Does Horner’s rule use any extra memory?
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4. Apply Horner’s rule to the instance given the same way it is applied to another
one in the section.

5. Compute p(2) where p(x) = x8 + x7 + x5 + x2 + 1.

6. If you implement the algorithm for long division by x − c efficiently, the
answer might surprise you.

7. a. Trace the left-to-right binary exponentiation algorithm on the instance
given the same way it is done for another instance in the section.

b. The answer is yes: the algorithm can be extended to work for the zero
exponent as well. How?

8. Trace the right-to-left binary exponentiation algorithm on the instance given
the same way it is done for another instance in the section.

9. Compute and use the binary digits of n “on the fly.”

10. Use a formula for the sum of the terms of this special kind of a polynomial.

11. Compare the number of operations needed to implement the task in question.

12. Although there exists exactly one such polynomial, there are several different
ways to represent it. You may want to generalize Lagrange’s interpolation
formula for n = 2:

p(x) = y1
x − x2

x1 − x2
+ y2

x − x1

x2 − x1

Exercises 6.6

1. a. Use the rules for computing lcm(m, n) and gcd(m, n) from the prime factors
of m and n.

b. The answer immediately follows from the formula for computing lcm
(m, n).

2. Use a relationship between minimization and maximization problems.

3. Prove the assertion by induction on k.

4. a. Base your algorithm on the following observation: a graph contains a cycle
of length 3 if and only if it has two adjacent vertices i and j that are also
connected by a path of length 2.

b. Do not jump to a conclusion in answering this question.

5. An easier solution is to reduce the problem to another one with a known
algorithm. Since we did not discuss many geometric algorithms in the book,
it should not be difficult to figure out to which one this problem needs to be
reduced.

6. Express this problem as a maximization problem of a function in one variable.

7. Introduce double-indexed variables xij to indicate an assignment of the ith
person to the j th job.
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8. Take advantage of the specific features of this instance to reduce the problem
to one with fewer variables.

9. Create a new graph.

10. Solve first the one-dimensional version of the post office location problem
(Problem 3(a) in Exercises 3.3).

11. a. Create a state-space graph for the problem as it is done for the river-
crossing puzzle in the section.

b. Create a state-space graph for the problem.

c. Look at the state obtained after the first six river crossings in the solution
to part (b).

12. The problem can be solved by reduction to a well-known problem about a
graph traversal.

CHAPTER 7

Exercises 7.1

1. Yes, it is possible. How?

2. Check the algorithm’s pseudocode to see what it does upon encountering
equal values.

3. Trace the algorithm on the input given (see Figure 7.2 for an example).

4. Check whether the algorithm can reverse a relative ordering of equal ele-
ments.

5. Where will A[i] be in the sorted array?

6. Take advantage of the standard traversals of such trees.

7. a. Follow the definitions of the arrays B and C in the description of the
method.

b. Find, say, B[C[3]] for the example in part (a).

8. Start by finding the target positions for all the statures.

9. a. Use linked lists to hold nonzero elements of the matrices.

b. Represent each of the given polynomials by a linked list with nodes con-
taining exponent i and coefficient ai for each nonzero term aix

i.

10. You may use a search of the literature/Internet to answer this question.

Exercises 7.2

1. Trace the algorithm in the same way it is done in the section for another
instance of the string-matching problem.

2. A special alphabet notwithstanding, this application is not different than
applications to natural-language strings.
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3. For each pattern, fill in its shift table and then determine the number of
character comparisons (both successful and unsuccessful) on each trial and
the total number of trials.

4. Find an example of a binary string of length m and a binary string of length n

(n ≥ m) so that Horspool’s algorithm makes
a. the largest possible number of character comparisons before making the

smallest possible shift.

b. the smallest possible number of character comparisons.

5. It is logical to try a worst-case input for Horspool’s algorithm.

6. Can the algorithm shift the pattern by more than one position without the
possibility of missing another matching substring?

7. For each pattern, fill in the two shift tables and then determine the number
of character comparisons (both successful and unsuccessful) on each trial and
the total number of trials.

8. Check the description of the Boyer-Moore algorithm.

9. Check the descriptions of the algorithms.

11. a. A brute-force algorithm fits the bill here.

b. Enhance the input before a search.

Exercises 7.3

1. Apply the open hashing (separate chaining) scheme to the input given, as is
done in the text for another input (see Figure 7.5). Then compute the largest
number and average number of comparisons for successful searches in the
constructed table.

2. Apply the closed hashing (open addressing) scheme to the input given as it is
done in the text for another input (see Figure 7.6). Then compute the largest
number and average number of comparisons for successful searches in the
constructed table.

3. How many different addresses can such a hash function produce? Would it
distribute keys evenly?

4. The question is quite similar to computing the probability of having the same
result in n throws of a fair die.

5. Find the probability that n people have different birthdays. As to the hashing
connection, what hashing phenomenon deals with coincidences?

6. a. There is no need to insert a new key at the end of the linked list it is
hashed to.

b. Which operations are faster in a sorted linked list and why? For sorting,
do we have to copy all elements in the nonempty lists in an array and
then apply a general purpose sorting algorithm, or is there a way to take
advantage of the sorted order in each of the nonempty linked lists?
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7. A direct application of hashing solves the problem.

8. Consider this question as a mini-review: the answers are in Section 7.3 for
hashing and in the appropriate sections of the book for the others. Of course,
you should use the best algorithms available.

9. If you need to refresh your memory, check the book’s table of contents.

Exercises 7.4

1. Thinking about searching for information should lead to a variety of examples.

2. a. Use the standard rules of sum manipulation and, in particular, the geomet-
ric series formula.

b. You will need to take logarithms base �m/2� in your derivation.

3. Find this value from the inequality in the text that provides the upper-bound
of the B-tree’s height.

4. Follow the insertion algorithm outlined in the section.

5. The algorithm is suggested by the definition of the B-tree.

6. a. Just follow the description of the algorithm given in the statement of the
problem. Note that a new key is always inserted in a leaf and that full nodes
are always split on the way down, even though the leaf for the new key may
have a room for it.

b. Can a split of a full node cause a cascade of splits through the chain of its
ancestors? Can we get a taller search tree than necessary?

CHAPTER 8

Exercises 8.1

1. Compare the definitions of the two techniques.

2. Use the table generated by the dynamic programming algorithm in solving
the problem’s instance in Example 1 of the section.

3. a. The analysis is similar to that of the top-down recursive computation of
the nth Fibonacci number in Section 2.5.

b. Set up and solve a recurrence for the number of candidate solutions that
need to be processed by the exhaustive search algorithm.

4. Apply the dynamic programming algorithm to the instance given as it is done
in Example 2 of the section. Note that there are two optimal coin combinations
here.

5. Adjust formula (8.5) for inadmissible cells and their immediate neighbors.

6. The problem is similar to the change-making problem discussed in the section.
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7. a. Relate the number of the rook’s shortest paths to the square in the ith row
and the j th column of the chessboard to the numbers of the shortest paths
to the adjacent squares.

b. Consider one shortest path as 14 consecutive moves to adjacent squares.

8. One can solve the problem in quadratic time.

9. Use a well-known formula from elementary combinatorics relating C(n, k) to
smaller binomial coefficients.

10. a. Topologically sort the dag’s vertices first.

b. Create a dag with n + 1 vertices: one vertex to start and the others to
represent the coins given.

11. Let F(i, j) be the order of the largest all-zero submatrix of a given matrix with
its low right corner at (i, j). Set up a recurrence relating F(i, j) to F(i − 1, j),

F (i, j − 1), and F(i − 1, j − 1).

12. a. In the situation where teams A and B need i and j games, respectively,
to win the series, consider the result of team A winning the game and the
result of team A losing the game.

b. Set up a table with five rows (0 ≤ i ≤ 4) and five columns (0 ≤ j ≤ 4) and
fill it by using the recurrence derived in part (a).

c. Your pseudocode should be guided by the recurrence set up in part (a).
The efficiency answers follow immediately from the table’s size and the
time spent on computing each of its entries.

Exercises 8.2

1. a. Use formulas (8.6)–(8.7) to fill in the appropriate table, as is done for
another instance of the problem in the section.

b., c. What would the equality of the two terms in

max{F(i − 1, j), vi + F(i − 1, j − wi)}
mean?

2. a. Write pseudocode to fill the table in Figure 8.4 (say, row by row) by using
formulas (8.6)–(8.7).

b. An algorithm for identifying an optimal subset is outlined in the section
via an example.

3. How many values does the algorithm compute? How long does it take to
compute one value? How many table cells need to be traversed to identify
the composition of an optimal subset?

4. Use the definition of F(i, j) to check whether it is always true that
a. F(i, j − 1) ≤ F(i, j) for 1 ≤ j ≤ W.

b. F(i − 1, j) ≤ F(i, j) for 1 ≤ i ≤ n.

5. The problem is similar to one of the problems discussed in Section 8.1.
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6. Trace the calls of the function MemoryKnapsack(i, j) on the instance in
question. (An application to another instance can be found in the section.)

7. The algorithm applies formula (8.6) to fill some of the table’s cells. Why can
we still assert that its efficiencies are in �(nW)?

8. One of the reasons deals with the time efficiency; the other deals with the
space efficiency.

9. You may want to include algorithm visualizations in your report.

Exercises 8.3

1. Continue applying formula (8.8) as prescribed by the algorithm.

2. a. The algorithm’s time efficiency can be investigated by following the stan-
dard plan of analyzing the time efficiency of a nonrecursive algorithm.

b. How much space do the two tables generated by the algorithm use?

3. k = R[1, n] indicates that the root of an optimal tree is the kth key in the list of
ordered keys a1, . . . , an. The roots of its left and right subtrees are specified
by R[1, k − 1] and R[k + 1, n], respectively.

4. Use a space-for-time trade-off.

5. If the assertion were true, would we not have a simpler algorithm for con-
structing an optimal binary search tree?

6. The structure of the tree should simply minimize the average depth of its
nodes. Do not forget to indicate a way to distribute the keys among the nodes
of the tree.

7. a. Since there is a one-to-one correspondence between binary search trees
for a given set of n orderable keys and binary trees with n nodes (why?),
you can count the latter. Consider all the possibilities of partitioning the
nodes between the left and right subtrees.

b. Compute the values in question using the two formulas.

c. Use the formula for the nth Catalan number and Stirling’s formula for n!.

8. Change the bounds of the innermost loop of algorithm OptimalBST by ex-
ploiting the monotonicity of the root table mentioned at the end of the section.

9. Assume that a1, . . . , an are distinct keys ordered from the smallest to the
largest, p1, . . . , pn are the probabilities of searching for them, and q0, q1, . . . ,

qn are probabilities of unsuccessful searches for keys in intervals (−∞, a1),

(a1, a2), . . . , (an, ∞), respectively; (p1 + . . . + pn) + (q0 + . . . + qn) = 1. Set
up a recurrence relation similar to recurrence (8.8) for the expected number
of key comparisons that takes into account both successful and unsuccessful
searches.

10. See the memory function solution for the knapsack problem in Section 8.2.

11. a. It is easier to find a general formula for the number of multiplications
needed for computing (A1 . A2) . A3 and A1 . (A2 . A3) for matrices A1 with
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dimensions d0 × d1, A2 with dimensions d1 × d2, and A3 with dimensions
d2 × d3 and then choose some specific values for the dimensions to get a
required example.

b. You can get the answer by following the approach used for counting binary
trees.

c. The recurrence relation for the optimal number of multiplications in com-
puting Ai

. . . . . Aj is very similar to the recurrence relation for the optimal
number of comparisons in searching a binary search tree composed of keys
ai, . . . , aj .

Exercises 8.4

1. Apply the algorithm to the adjacency matrix given, as is done in the section
for another matrix.

2. a. The answer can be obtained either by considering how many values the
algorithm computes or by following the standard plan for analyzing the
efficiency of a nonrecursive algorithm (i.e., by setting up a sum to count its
basic operation’s executions).

b. What is the efficiency class of the traversal-based algorithm for sparse
graphs represented by their adjacency lists?

3. Show that one can simply overwrite elements of R(k−1) with elements of R(k)

without any other changes in the algorithm.

4. What happens if R(k−1)[i, k] = 0?

5. Show first that formula (8.11) (from which the superscripts can be eliminated
according to the solution to Problem 3)

rij = rij or (rik and rkj)

is equivalent to

if rik rij ← (rij or rkj).

6. a. What property of the transitive closure indicates a presence of a directed
cycle? Is there a better algorithm for checking this?

b. Which elements of the transitive closure of an undirected graph are equal
to 1? Can you find such elements with a faster algorithm?

7. See an example of applying the algorithm to another instance in the section.

8. What elements of matrix D(k−1) does d
(k)
ij , the element in the ith row and the

j th column of matrix D(k), depend on? Can these values be changed by the
overwriting?

9. Your counterexample must contain a cycle of a negative length.
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10. It will suffice to store, in a single matrix P , indices of intermediate vertices k

used in updates of the distance matrices. This matrix can be initialized with
all its elements equal to, say, −1.

CHAPTER 9

Exercises 9.1

1. You may use integer divisions in your algorithm.

2. You can apply the greedy approach either to each of its rows (or columns) or
to the entire cost matrix.

3. Considering the case of two jobs might help. Of course, after forming a
hypothesis, you will have to prove the algorithm’s optimality for an arbitrary
input or find a specific counterexample showing that it is not the case.

4. Only the earliest-finish-first algorithm always yields an optimal solution.

5. Simply apply the greedy approach to the situation at hand. You may assume
that t1 ≤ t2 ≤ . . . ≤ tn.

6. Think the minimum positive amount of water among all the vessels in their
current state.

7. The minimum number of messages for n = 4 is six.

8. For both versions of the problem, it is not difficult to get to a hypothesis about
the solution’s form after considering the cases of n = 1, 2, and 3. It is proving
the solutions’ optimality that is at the heart of this problem.

9. a. Trace the algorithm for the graph given. An example can be found in the
text.

b. After the next fringe vertex is added to the tree, add all the unseen vertices
adjacent to it to the priority queue of fringe vertices.

10. Applying Prim’s algorithm to a weighted graph that is not connected should
help in answering this question.

11. Check whether the proof of the algorithm’s correctness is valid for negative
edge weights.

12. The answer is no. Give a counterexample.

13. Since Prim’s algorithm needs weights on a graph’s edges, some weights have
to be assigned. As to the second question, think of other algorithms that can
solve this problem.

14. Strictly speaking, the wording of the question asks you to prove two things: the
fact that at least one minimum spanning tree exists for any weighted connected
graph and the fact that a minimum spanning tree is unique if all the weights are
distinct numbers. The proof of the former stems from the obvious observation
about finiteness of the number of spanning trees for a weighted connected
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graph. The proof of the latter can be obtained by repeating the correctness
proof of Prim’s algorithm with a minor adjustment at the end.

15. Consider two cases: the key’s value was decreased (this is the case needed for
Prim’s algorithm) and the key’s value was increased.

Exercises 9.2

1. Trace the algorithm for the given graphs the same way it is done for another
input in the section.

2. Two of the four assertions are true; the other two are false.

3. Applying Kruskal’s algorithm to a disconnected graph should help to answer
the question.

4. One way to answer the question is to transform a graph with negative weights
to one with all positive weights.

5. Is the general trick of transforming maximization problems to their minimiza-
tion counterparts (see Section 6.6) applicable here?

6. Substitute the three operations of the disjoint subsets’ ADT—makeset(x),
find(x), and union(x, y)—in the appropriate places of the algorithm’s pseu-
docode given in the section.

7. Follow the plan used in Section 9.1 to prove the correctness of Prim’s algo-
rithm.

8. The argument is very similar to the one made in the section for the union-by-
size version of quick find.

11. The question is not trivial, because introducing extra points (called Steiner
points) may make the total length of the network smaller than that of a
minimum spanning tree of the square. Solving first the problem for three
equidistant points might give you an indication of what a solution to the
problem in question might look like.

Exercises 9.3

1. One of the questions requires no changes in either the algorithm or the graph;
the others require simple adjustments.

2. Just trace the algorithm on the input graphs the same way it was done for an
example in the section.

3. Your counterexample can be a graph with just three vertices.

4. Only one of the assertions is correct. Find a small counterexample for the
other.

5. Simplify the pseudocode given in the section by implementing the priority
queue as an unordered array and eliminating the parental labeling of vertices.

6. Prove it by induction on the number of vertices included in the tree con-
structed by the algorithm.
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7. Topologically sort the dag’s vertices first.

8. To get a graph, connect numbers on adjacent levels that can be components
of a sum from the apex to the base. Then figure out how to deal with the fact
that the weights are assigned to vertices rather than edges.

9. Take advantage of the ways of thinking used in geometry and physics.

10. Before you embark on implementing a shortest-path algorithm, you would
have to decide what criterion determines the “best route.” Of course, it would
be highly desirable to have a program asking the user which of several possible
criteria s/he wants to be applied.

Exercises 9.4

1. See the example given in the section.

2. After combining the two nodes with the lowest probabilities, resolve the tie
arising on the next iteration in two different ways. For each of the two Huffman
codes obtained, compute the mean and variance of the codeword length.

3. You may base your answers on the way Huffman’s algorithm works or on the
fact that Huffman codes are known to be optimal prefix codes.

4. The maximal length of a codeword relates to the height of Huffman’s coding
tree in an obvious fashion. Try to find a set of n specific frequencies for
an alphabet of size n for which the tree has the shape yielding the longest
codeword possible.

5. a. What is the most appropriate data structure for an algorithm whose prin-
cipal operation is finding the two smallest elements in a given set and
replacing them by their sum?

b. Identify the principal operations of the algorithm, the number of times they
are executed, and their efficiencies for the data structure used.

6. Maintain two queues: one for given frequencies, the other for weights of new
trees.

7. It would be natural to use one of the standard traversal algorithms.

8. Generate the codewords right to left.

10. A similar example was discussed at the end of Section 9.4. Construct Huff-
man’s tree and then come up with specific questions that would yield that tree.
(You are allowed to ask questions such as: Is this card the ace, or a seven, or
an eight?)

CHAPTER 10

Exercises 10.1

1. Start at an arbitrary integer point x and investigate whether a neighboring
point is a better location for the post office than x is.
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2. Sketch the feasible region of the problem in question. Follow this up by either
applying the Extreme-Point Theorem or by inspecting level lines, whichever
is more appropriate. Both methods were illustrated in the text.

3. Sketch the feasible region of the problem. Then choose values of the param-
eters c1 and c2 to obtain a desired behavior of the objective function’s level
lines.

4. What is the principal difference between maximizing a linear function, say,
f (x) = 2x, on a closed vs. semi-open interval, e.g., 0 ≤ x ≤ 1 vs. 0 ≤ x < 1?

5. Trace the simplex method on the instances given, as was done for an example
in the text.

6. When solving the problem by hand, you might want to start by getting rid
of fractional coefficients in the problem’s statement. Also, note that the
problem’s specifics make it possible to replace its equality constraint by
one inequality constraint. You were asked to solve this problem directly in
Problem 8 of Exercises 6.6.

7. The specifics of the problem make it possible to see the optimal solution at
once. Sketching its feasible region for n = 2 or n = 3, though not necessary,
may help to see both this solution and the number of iterations needed by the
simplex method to find it.

8. Consider separately two versions of the problem: continuous and 0-1 (see
Example 2 in Section 6.6).

9. If x′ = (x′
1, x′

2, . . . , x′
n
) and x′′ = (x′′

1 , x′′
2 , . . . , x′′

n
) are two distinct optimal so-

lutions to the same linear programming problem, what can we say about any
point of the line segment with the endpoints at x′ and x′′? Note that any such
point x can be expressed as x = tx′ + (1 − t)x′′ = (tx′

1 + (1 − t)x′′
1 , tx′

2 + (1 −
t)x′′

2 , . . . , tx′
n
+ (1 − t)x′′

n
), where 0 ≤ t ≤ 1.

10. a. You will need to use the notion of a matrix transpose, defined as the matrix
whose rows are the columns of the given matrix.

b. Apply the general definition to the specific problem given. Note the change
from maximization to minimization, the change of the roles played by the
objective function’s coefficients and the constraints’ right-hand sides, the
transposition of the constraints, and the reversal of their signs.

c. You may use either the simplex method or the geometric approach.

Exercises 10.2

1. What properties of the elements of the modified adjacency matrix stem from
the source and sink definitions, respectively?

2. See the algorithm and an example illustrating it in the text.

3. Of course, the value (capacity) of an optimal flow (cut) is the same for any
optimal solution. The question is whether distinct flows (cuts) can yield the
same optimal value.
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4. a. Add extra vertices and edges to the network given.

b. If an intermediate vertex has a constraint on the flow amount that can flow
through it, split the vertex in two.

5. Take advantage of the recursive structure of a rooted tree.

6. a. Sum the equations expressing the flow-conservation requirements.

b. Sum the equations defining the flow value and flow-conservation require-
ments for the vertices in set X inducing the cut.

7. a. Use template (10.11) given in the text.

b. Use either an add-on tool of your spreadsheet or some software available
on the Internet.

10. Use edge capacities to impose the problem’s constraints. Also, take advantage
of the solution to Problem 4(a).

Exercises 10.3

1. You may (but do not have to) use the algorithm described in the section.

2. See an application of this algorithm to another bipartite graph in the section.

3. The definition of a matching and its cardinality should lead you to the answers
to these questions with no difficulty.

4. a. You do not have to check the inequality for each subset S of V if you can
point out a subset for which the inequality does not hold. Otherwise, fill in
a table for all the subsets S of the indicated set V with columns for S, R(S),

and |R(S)| ≥ |S|.
b. Think time efficiency.

5. Reduce the problem to finding a maximum matching in a bipartite graph.

6. Transform a given bipartite graph into a network by making vertices of the
former be intermediate vertices of the latter.

7. Since this greedy algorithm is arguably simpler than the augmenting-path
algorithm given in the section, should we expect a positive or negative answer?
Of course, this point cannot be substituted for a more specific argument or a
counterexample.

8. Start by presenting a tree given as a BFS tree.

9. For pointers regarding an efficient implementation of the algorithm, see
[Pap82, Section 10.2].

10. Although not necessary, thinking about the problem as one dealing with
matching squares of a chessboard might lead you to a short and elegant proof
that this well-known puzzle has no solution.



538 Hints to Exercises

Exercises 10.4

1. A marriage matching is obtained by selecting three matrix cells, one cell from
each row and column. To determine the stability of a given marriage matching,
check each of the remaining matrix cells for a blocking pair.

2. It suffices to consider each member of one sex (say, the men) as a potential
member of a blocking pair.

3. An application of the men-proposing version to another instance is given in
the section. For the women-proposing version, reverse the roles of the sexes.

4. You may use either the men-proposing or women-proposing version of the
algorithm.

5. The time efficiency is clearly defined by the number of proposals made. You
may (but are not required to) provide the exact number of proposals in the
worst and best cases, respectively; an appropriate � class will suffice.

6. Prove it by contradiction.

7. Prove it by contradiction.

8. Choose data structures so that the innermost loop of the algorithm can run in
constant time.

9. The principal references are [Gal62] and [Gus89].

10. Consider four boys, three of whom rate the fourth boy as the least desired
roommate. Complete these rankings to obtain an instance with no stable
pairing.

CHAPTER 11

Exercises 11.1

1. Is it possible to solve the puzzle by making fewer moves than the brute-force
algorithm? Why?

2. Since you know that the number of disk moves made by the classic algorithm
is 2n − 1, you can simply prove (e.g., by mathematical induction) that for any
algorithm solving this problem, the number of disk moves M(n) made by the
algorithm is greater than or equal to 2n − 1. Alternatively, you can show that
if M∗(n) is the minimum needed number of disk moves, then M∗(n) satisfies
the recurrence relation

M∗(n) = 2M∗(n − 1) + 1 for n > 1 and M∗(1) = 1,

whose solution is 2n − 1.

3. All these questions have straightforward answers. If a trivial lower bound is
tight, don’t forget to mention a specific algorithm that proves its tightness.

4. Reviewing Section 4.4, where the fake-coin problem was introduced, should
help in answering the question.
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5. Pay attention to comparison losers.

6. Think inversions.

7. Divide the set of vertices of an input graph into two disjoint subsets U and
W having �n/2� and �n/2� vertices, respectively, and show that any algorithm
will have to check for an edge between every pair of vertices (u, w), where
u ∈ U and w ∈ W, before the graph’s connectivity can be established.

8. The question and the answer are quite similar to the case of two n-element
sorted lists discussed in the section. So is the proof of the lower bound.

9. Simply follow the transformation formula suggested in the section.

10. a. Check whether the formulas hold for two arbitrary square matrices.

b. Use a formula similar to the one showing that multiplication of arbitrary
square matrices can be reduced to multiplication of symmetric matrices.

11. What problem with a known lower bound is most similar to the one in ques-
tion? After finding an appropriate reduction, do not forget to indicate an
algorithm that makes the lower bound tight.

12. Use the problem reduction method.

Exercises 11.2

1. a. Prove first that 2h ≥ l by induction on h.

b. Prove first that 3h ≥ l by induction on h.

2. a. How many outcomes does the problem have?

b. Of course, there are many ways to solve this simple problem.

c. Thinking about a, b, and c as points on the real line should help.

3. This is a straightforward question. You may assume that the three elements
to be sorted are distinct. (If you need help, see decision trees for the three-
element selection sort and three-element insertion sort in the section.)

4. Compute a nontrivial lower bound for sorting a four-element array and then
identify a sorting algorithm whose number of comparisons in the worst case
matches the lower bound.

5. This is not an easy task. None of the standard sorting algorithms can do this.
Try to design a special algorithm that squeezes as much information as possible
from each of its comparisons.

6. This is a very straightforward question. Use the obvious observation that
sequential search in a sorted list can be stopped as soon as an element larger
than the search key is encountered.

7. a. Start by transforming the logarithms to the same base.

b. The easiest way is to prove that

lim
n→∞

�log2(n + 1)�
�log3(2n + 1)� > 1.
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To get rid of the ceiling functions, you can use

f (n) − 1
g(n) + 1

<
�f (n)�
�g(n)� <

f (n) + 1
g(n) − 1

where f (n) = log2(n + 1) and g(n) = log3(2n + 1) and show that

lim
n→∞

f (n) − 1
g(n) + 1

= lim
n→∞

f (n) + 1
g(n) − 1

> 1.

8. The answer to the first question follows directly from inequality (11.1). The
answer to the second is no (why?).

9. a. Think losers.

b. Think the height of the tournament tree or, alternatively, the number of
steps needed to reduce an n-element set to a one-element set by halving.

c. After the winner has been determined, which player can be the second
best?

10. a. How many outcomes does this problem have?

b. Draw a ternary decision tree that solves the problem.

c. Show that each of the two cases—weighing two coins (one on each cup of
the scale) or four coins (two on each cup of the scale)—yields at least one
situation with more than three outcomes still possible. The latter cannot
be resolved uniquely with a single weighing.1

d. Decide first whether you should start with weighing two coins. Do not
forget that you can take advantage of the extra coin known to be genuine.

e. This is a famous puzzle. The principal insight is that of the solution to
part (d).

11. If you want to solve the problem in the spirit of the section, represent the
process of assembling the puzzle by a binary tree.

Exercises 11.3

1. Check the definition of a decidable decision problem.

2. First, determine whether nlog2 n is a polynomial function. Then, read carefully
the definitions of tractable and intractable problems.

3. All four combinations are possible, and none of the examples needs to be
large.

4. Simply use the definition of the chromatic number. Solving Problem 5 first
might be helpful but not necessary.

5. This problem should be already familiar to you.

1. This approach of using information-theoretic reasoning for the problem was suggested by Brassard
and Bratley [Bra96].
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6. What is a proper measure of an input’s size for this problem?

7. See the formulation of the decision version of graph coloring and the verifi-
cation algorithm for the Hamiltonian circuit problem given in the section.

8. You may start by expressing the partition problem as a linear equation with
0-1 variables xi, i = 1, . . . , n.

9. If you are not familiar with the notions of a clique, vertex cover, and indepen-
dent set, it would be a good idea to start by finding a maximum-size clique,
a minimum-size vertex cover, and a maximum-size independent set for a few
simple graphs such as those in Problem 4. As far as Problem 9 is concerned,
try to find a relationship between these three notions. You will find it useful
to consider the complement of your graph, which is the graph with the same
vertices and the edges between vertices that are not adjacent in the graph
itself.

10. The same problem in a different wording can be found in the section.

11. Just two of them do not contradict the current state of our knowledge about
the complexity classes.

12. The problem you need was mentioned explicitly in the section.

Exercises 11.4

1. As the given definition of the number of significant digits requires, compute
the relative errors of the approximations. One of the answers doesn’t agree
with our intuitive idea of this notion.

2. Use the definitions of the absolute and relative errors and the properties of
the absolute value.

3. Compute the value of
∑5

i=0
0.5i

i! and the magnitude of the difference between
it and

√
e = 1.648721 . . . .

4. Apply the formula for the area of a trapezoid to each of the n approximating
trapezoid strips and sum them up.

5. Apply formulas (11.7) and (11.9) to the integrals given.

6. Find an upper bound for the second derivative of esin x and use formula (11.9)
to find a value of n guaranteeing the truncation error smaller than the given
error limit.

7. A similar problem is discussed in the section.

8. Consider all possible values for the coefficients a, b, and c. Keep in mind that
solving an equation means finding all its roots or proving that no roots exist.

9. a. Prove that every element xn of the sequence is (i) positive, (ii) greater
than

√
D (by computing xn+1 − √

D), and (iii) decreasing (by computing
xn+1 − xn). Then take the limit of both sides of equality (11.15) as n goes
to infinity.
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b. Use the equality

xn+1 − √
D = (xn − √

D)2

2xn

.

10. It is done for
√

2 in the section.

CHAPTER 12

Exercises 12.1

1. a. Resume the algorithm by backtracking from the first solution’s leaf.

b. How can you get the second solution from the first one by exploiting a
symmetry of the board?

2. Think backtracking applied backward.

3. a. Take advantage of the general template for backtracking algorithms. You
will have to figure out how to check whether no two queens attack each
other in a given placement of the queens.

To make your comparison with an exhaustive-search algorithm easier,
you may consider the version that finds all the solutions to the problem
without taking advantage of the symmetries of the board. Also note that
an exhaustive-search algorithm can try either all placements of n queens on
n distinct squares of the n × n board, or only placements of the queens in
different rows, or only placements in different rows and different columns.

b. Although it is interesting to see how accurate such an estimate is for a single
random path, you would want to compute the average of several of them
to get a reasonably accurate estimate of the tree size.

4. Consider separately six cases of different remainders of the division of n by
6. The cases of n mod 6 = 2 and n mod 6 = 3 are harder than the others and
require an adjustment of a greedy placement of the queens.

5. Another instance of this problem is solved in the section.

6. Note that without loss of generality, one can assume that vertex a is colored
with color 1 and hence associate this information with the root of the state-
space tree.

7. This application of backtracking is quite straightforward.

8. a. Another instance of this problem is solved in the section.

b. Some of the nodes will be deemed promising when, in fact, they are not.

9. A minor change in the template given does the job.

11. Make sure that your program does not duplicate tree nodes for the same board
position. And, of course, if a given instance of the puzzle does not have a
solution, your program should issue a message to that effect.
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Exercises 12.2

1. What operations does a best-first branch-and-bound algorithm perform on
the live nodes of its state-space tree?

2. Use the smallest numbers selected from the columns of the cost matrix to
compute the lower bounds. With this bounding function, it’s more logical to
consider four ways to assign job 1 for the nodes on the first level of the tree.

3. a. Your answer should be an n × n matrix with a simple structure making the
algorithm work the fastest.

b. Sketch the structure of the state-space tree for your answer to part (a).

5. A similar problem is solved in the section.

6. Take into account more than a single item from those not included in the
subset under consideration.

8. A Hamiltonian circuit must have exactly two edges incident to each vertex of
the graph.

9. A similar problem is solved in the section.

Exercises 12.3

1. a. Start by marking the first column of the matrix and finding the smallest
element in the first row and an unmarked column.

b. You will have to find an optimal solution by exhaustive search or by a
branch-and-bound algorithm or by some other method.

2. a. The simplest approach is to mark matrix columns that correspond to visited
cities. Alternatively, you can maintain a linked list of unvisited cities.

b. Following the standard plan for analyzing algorithm efficiency should pose
no difficulty (and yield the same result for either of the two options men-
tioned in the hint to part (a)).

3. Do the walk in the clockwise direction.

4. Extend the triangle inequality to the case of k ≥ 1 intermediate vertices and
prove its validity by mathematical induction.

5. First, determine the time efficiency of each of the three steps of the algorithm.

6. You will have to prove two facts:
i. f (s∗) ≤ 2f (sa) for any instance of the knapsack problem, where f (sa) is

the value of the approximate solution obtained by the enhanced greedy
algorithm and f (s∗) is the optimal value of the exact solution to the same
instance.

ii. The smallest constant for which such an assertion is true is 2.
In order to prove (i), use the value of the optimal solution to the continuous
version of the problem and its relationship to the value of the approximate
solution. In order to prove (ii), find a family of three-item instances that prove
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the point (two of them can be of weight W/2 and the third one can be of a
weight slightly more than W/2).

7. a. Trace the algorithm on the instance given and then answer the question
whether you can put the same items in fewer bins.

b. What is the basic operation of this algorithm? What inputs make the
algorithm run the longest?

c. Prove first the inequality

BFF < 2
n∑

i=1

si for any instance with BFF > 1

where BFF is the number of bins obtained by applying the first-fit (FF) al-
gorithm to an instance with sizes s1, s2, . . . , sn. To prove it, take advantage
of the fact that there can be no more than one bin that is half full or less.

8. a. Trace the algorithm on the instance given and then answer the question
whether you can put the same items in fewer bins.

b. You can answer the question either with a theoretical argument or by
providing a counterexample.

c. Take advantage of the two following properties:
i. All the items placed by FFD in extra bins, i.e., bins after the first B∗

ones, have size at most 1/3.
ii. The total number of items placed in extra bins is at most B∗ − 1.

(B∗ is the optimal number of bins.)

d. This task has two versions of dramatically different levels of difficulty. What
are they?

9. a. One such algorithm is based on the idea similar to that of the source
removal algorithm for the transitive closure except that it starts with an
arbitrary edge of the graph.

b. Recall the warning that polynomial-time equivalence of solving NP-hard
problems exactly does not imply the same for their approximate solving.

10. a. Color the vertices without introducing new colors unnecessarily.

b. Find a sequence of graphs Gn for which the ratio

χa(Gn)

χ∗(Gn)

(where χa(Gn) and χ∗(Gn) are the number of colors obtained by the greedy
algorithm and the minimum number of colors, respectively) can be made
as large as one wishes.
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Exercises 12.4

1. It might help your search to know that the solution was first published by
Italian Renaissance mathematician Girolamo Cardano.

2. You can answer these questions without using calculus or a sophisticated
calculator by representing equations in the form f1(x) = f2(x) and graphing
functions f1(x) and f2(x).

3. a. Use the property underlying the bisection method.

b. Use the definition of division of polynomial p(x) by x − x0, i.e., the equality

p(x) = q(x)(x − x0) + r,

where x0 is a root of p(x), q(x) and r are the quotient and remainder of
this division, respectively.

c. Differentiate both sides of the equality given in part (b) and substitute x0
in the result.

4. Use the fact that |xn − x∗| is the distance between xn, the middle of interval
[an, bn], and root x∗.

5. Sketch the graph to determine a general location of the root and choose an ini-
tial interval bracketing it. Use an appropriate inequality given in Section 12.4
to determine the smallest number of iterations required. Perform the itera-
tions of the algorithm, as is done for the example in the section.

6. Write an equation of the line through the points (an, f (an)) and (bn, f (bn))

and find its x-intercept.

7. See the example given in the section. As a stopping criterion, you may use
either the length of interval [an, bn] or inequality (12.12).

8. Write an equation of the tangent line to the graph of the function at (xn, f (xn))

and find its x-intercept.

9. See the example given in the section. Of course, you may start with a different
x0 than the one used in that example.

10. Consider, for example, f (x) = 3
√

x.

11. Derive an equation for the area in question and then solve it by using one of
the methods discussed in the section.
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left-to-right, 237, 240ex
right-to-left, 238–239, 240ex

binary reflected Gray code. See Gray code
binary representation of a decimal integer

length counter algorithm, 66, 75, 78ex

number of bits in, 44, 51ex
binary search, 150–152, 156ex, 163, 168sum,

205, 463
efficiency of, 151–152, 157ex

binary search tree, 34, 38ex, 60ex, 166ex,
186ex, 218, 226ex, 303ex. See also
AVL tree

deletion in, 166ex
insertion in, 163, 164fig
optimal, 297–302, 303ex
searching in, 163
self-balancing, 218

binary string. See bit string
binary tree, 33–35, 38ex, 39sum, 182–185.

See also decision trees
(essentially) complete, 227
extension of, 183
full, 184
height of, 33, 183–184
path length in

external, 186ex
internal, 186ex
minimum weighted, 341–342

traversals of, 182–185, 185ex, 186ex
binary tree search. See binary search tree,

searching in
binomial coefficient, 292ex, 297ex
bin-packing problem, 404, 407, 410ex

approximation algorithms for, 458ex
bipartite graph, 129ex

maximum matching in, 372–380
birthday paradox, 275ex
bisection method, 460–463, 466, 467ex,

469sum. See also binary search
bit string, 26

and subset, 147
as codeword, 338–341, 342ex, 343ex

bit vector, 36
Bland’s rule, 357
Bouton, C. L., 166
Boyer-Moore algorithm, 259, 263–267,

268ex, 280sum
branch-and-bound, 432–441, 468sum

best-first, 434, 435fig, 437fig, 440ex
for assignment problem, 433–436,

440ex
for knapsack problem, 436–438, 440–

441ex
for TSP, 438–440, 441ex
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breadth-first search (BFS), 125–128, 129ex,
130ex, 130sum

efficiency of, 127
forest, 125, 126fig, 128ex, 130sum
main facts about, 128
queue, 125

brute force, 97–130, 130sum. See also
exhaustive search

for closest-pair problem, 108–109, 113ex,
114ex

for composite number problem, 410ex
for convex-hull problem, 112–113, 115ex
for element-uniqueness problem, 63–64
for matrix multiplication, 64–66, 68ex
for polynomial evaluation, 239ex
for searching. See sequential search
for sorting. See bubble sort; selection

sort
for string matching, 105–106, 107ex,

268ex
vs. presorting, 203–204, 205ex, 206ex

B-tree, 276–279, 279ex, 280ex, 281sum
efficiency of, 278
height of, 277–278, 279ex

B+-tree, 279, 281sum
bubble sort, 100–101, 103ex

efficiency of, 101
improvement of, 102ex

bucket, in extendible hashing, 274

C
C, 85
C++, 37, 85, 189
capacity

constraints, for network flow, 362, 370,
371ex

of a cut, 369
minimum, 369

of an edge, 361, 365n, 371ex
c-approximation algorithm, 443. See also

2-approximation algorithm
Catalan numbers, 298, 303ex
ceiling (��) function, 477
celebrity problem, 79ex
change-making problem, 287

dynamic programming for, 287–288,
290ex

greedy algorithm for, 315, 322ex
characteristic equation, 482–485

chess
as decision problem, 409ex
invention legend, 52ex

child, of a tree vertex
left, in binary tree, 33
right, in binary tree, 33
of rooted tree vertex, 33
of search tree vertex, 223–224, 276

Christofides algorithm, 448–449, 453,
469sum

chromatic number, 404, 410ex
classes, in object-oriented languages, 37,

189
clique, 121ex, 410ex
clock (function), 85
closed hashing (open addressing). See

hashing, closed
closest-pair problem, 22

brute force for, 108–109, 113ex, 114ex
divide-and-conquer for, 192–195,

197ex
cluster, in hashing, 273
CNF-satisfiability, 407
codeword, 338
college admission problem, 384ex
collision, in hashing, 270, 272–273. See also

birthday paradox
combinations, generating of, 149ex
combinatorial objects, generating of,

144–149
combinatorial problems, 21–22. See

also approximation algorithms;
backtracking; branch-and-bound;
dynamic programming; exhaustive
search; NP-complete problems;
NP-hard problems

comparison counting sort, 23ex, 254–255,
257ex

efficiency of, 255
composite number problem, 410ex. See

also primality testing
composite trapezoidal rule, 412, 413fig,

419ex, 420ex
compression ratio, 341, 343ex
computational complexity, 401–411,

420sum
connected component, of a graph, 31,

129ex. See also strongly connected
component
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connectivity, of a graph, 31, 124–125, 127,
137ex, 324ex, 394ex, 402

consecutive integer checking algorithm
for composite number problem, 410ex
for gcd, 5, 98

constant (basic efficiency class), 59
algorithm, example of, 61ex, 84ex, 181,

274, 328, 330
convex hull, 110–112, 114–115ex
convex-hull problem, 22, 109–110, 112

brute-force algorithm for, 112–113,
115ex

divide-and-conquer algorithm (quick-
hull) for, 195–197, 198ex

convex set, 110–111
Cook, Stephen, 407, 409
cost (weight), of an edge, 30
cost matrix, 30

in assignment problem, 119, 433
CPM (Critical Path Method), 141
Cramer’s rule, 216, 217ex
cross edge, 125, 126fig, 127, 128, 129ex, 139
cubic

algorithm, example of, 210–212, 215, 302,
307, 310, 473

function and basic efficiency class, 46, 53,
58, 59, 88

currentTimeMillis(), 85
cut, in network

capacity of, 369
minimum, 369. See also Max-Flow Min-

Cut Theorem; augmenting-path
method

cycle. See also Eulerian circuit; Hamilto-
nian circuit

in directed graph, 139. See also
topological sorting

in undirected graph, 31, 32, 125, 127,
129ex, 248ex. See also forest; tree

cycling, in linear programming, 357

D
dag (directed acyclic graph), 139

longest path in, 292ex
shortest paths in, 338ex
topological sorting of, 139–141, 142ex,

143ex
Dantzig, George B., 346, 347n

data compression, 254. See also Huffman
codes

data structures, 12, 25–38, 39sum
decision problem, 402, 404, 421sum. See

also P; NP; NP-complete
decidable, 402, 409ex
polynomially reducible, 406, 410ex
undecidable, 402–403

decision trees, 394–401
for fake-coin problems, 400–401ex
for searching sorted array, 397–399,

400ex
for sorting, 395–397, 400ex
height of, 395, 399ex

decrease-and-conquer, 131–168, 167sum
decrease-by-a-constant, 131–132. See also

decrease-by-one
decrease-by-a-constant-factor, 132, 150–

157. See also decrease-by-half
recurrence, 486–487

decrease-by-half, 132, 133fig, 156ex
for exponentiation, 132–133
for integer multiplication. See Russian

peasant multiplication
for searching. See binary search
Josephus problem, 154–155, 157ex
other applications, 66, 156ex, 157ex,

460–463
decrease-by-one, 131, 132fig

for exponentiation, 131–132
for graph traversal. See breadth-first

search; depth-first search
for permutations and subsets, 144–149
for sorting. See insertion sort
for topological sorting, 141, 142ex
other applications, 136–137ex
recurrence, 485–486

depth, of a tree vertex, 33
depth-first search (DFS), 122–125, 128–

130ex, 130sum, 248ex
efficiency of, 124
for directed graph, 139. See also

topological sorting
forest, 123–125, 128ex
main facts about, 128
stack, 123fig, 124

dequeue, 27, 37ex
Descartes, René, 241
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descendants, of a tree vertex, 33
proper, 33

determinant, 78–79ex, 197, 215–216, 217ex,
241

DFS. See depth-first search
dictionary, 36, 274, 275ex
digraph (directed graph), 28

acyclic, 139. See also topological sorting
depth-first search forest of, 139
strongly connected, 142–143ex
transitive closure of, 304–308, 311–312ex

Dijkstra, Edsger W., 333n
Dijkstra’s algorithm, 333–338

efficiency of, 335, 337
Diophantine equation, 8ex
directed cycle, 139
directed graph. See digraph
disjoint subsets (ADT), 327–331. See also

Kruskal’s algorithm
operations on, 328
quick find, 328–330
quick union, 330–331, 332ex

path compression, 331
union by rank, 331
union by size, 330, 331, 332ex

distance
Euclidean, 108, 114ex
Hamming, 114ex
Manhattan, 114ex, 249ex, 317
minimum, 18ex, 114ex. See also closest-

pair problem
distance matrix, 308. See also Dijkstra’s

algorithm; Floyd’s algorithm
distribution counting sort, 256–257, 257ex,

258ex
efficiency of, 257

divide-and-conquer, 59, 169–199, 198sum
for binary tree traversals and properties,

182–186
for closest-pair problem, 192–195, 197ex
for convex-hull problem (quickhull),

195–197, 198ex
for matrix multiplication. See matrix

multiplication, Pan’s algorithm;
matrix multiplication, Strassen’s
algorithm

for multiplication of large integers,
187–189, 191ex

for sorting. See mergesort; quicksort

mathematical analysis of, 171, 487–491
other applications of, 174ex, 175ex
recurrence. See general divide-and-

conquer recurrence
DNA, 267ex
DNA computing, 474
double hashing, 273–274
Dudeney, Henry E., 121ex
Dutch national flag problem, 182ex
dynamic programming, 254, 283–312,

312–313sum
for binomial coefficient, 292ex, 297ex
for change-making problem, 287–288,

290ex
for coin-collecting problem, 288–290,

291ex
for coin-row problem, 285–287, 290ex,

292ex
for knapsack problem, 292–296, 296–

297ex, 313sum
for matrix chain multiplication, 303ex
for optimal binary search trees, 297–302,

303ex
memory functions, 294–296, 297ex,

303ex, 313sum
other applications of, 291–292ex
principle of optimality, 284
Warshall’s and Floyd’s algorithms,

304–312

E
edge, 28. See also back edge; backward

edge; cross edge; forward edge
directed, 28
undirected, 28
weight (cost) of, 30

edge-coloring problem, 249ex
Edmonds, Jack, 365, 370, 372ex, 372
efficiency, of algorithm. See also analysis of

algorithm efficiency
space efficiency (space complexity),

42–43, 50, 60ex
time efficiency (time efficiency), 42–43,

44–45, 50, 58ex, 60ex, 94sum
elementary operations, in Gaussian

elimination, 209
element uniqueness problem, 63

brute-force algorithm for, 63
hashing for, 275ex
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lower bound for, 392
presorting-based algorithm for, 203

ellipsoid method, 358–359
empirical analysis of algorithms, 84–91,

95sum
endpoints, of an edge, 28
enqueue, 27
error

absolute, 414, 419ex
relative, 414, 415, 417–418, 419ex, 420ex.

See also accuracy ratio
round-off, 22–23, 170n, 211, 212, 414,

417–418, 461. See also instability;
subtractive cancellation

truncation, 412–413, 419ex, 420ex,
421sum

Euclidean distance, 108, 114ex
Euclidean instance, of TSP, 446, 447, 448,

452, 453, 469sum
Euclid’s algorithm, 4, 8ex, 14, 50ex, 133

efficiency of, 80, 84ex, 90–91ex, 166ex
extended, 8ex
and least common multiple, 242, 248ex

Euclid’s game, 8ex
Euler, Leonhard, 24ex, 208n
Eulerian circuit, 120ex, 166ex, 404, 409ex,

448. See also puzzles and puzzle-like
questions, Königsberg bridges

exhaustive search, 115–122, 130sum, 423
for assignment problem, 119–120, 120ex
for knapsack problem, 116–119
for other problems,121–122ex
for traveling salesman problem, 116, 117,

120ex
exponent, of floating-point number, 414
exponential

algorithm, example of, 59, 74, 81–82, 358.
See also exhaustive search

function and basic efficiency class, 46, 58,
59, 80

exponentiation
brute force for, 97, 102ex
decrease-by-half for, 132–133
decrease-by-one for, 131–132
divide-and-conquer for, 174ex
representation change for. See binary

exponentiation
extendible hashing, 274
external node, 183, 184

external path length, 186ex
extrapolation, 88, 90ex
extreme point, 110, 112, 114–115ex, 195

in linear programming, 115ex, 350–351.
See also simplex method

Extreme Point Theorem, 350

F
factorial

function and basic efficiency class, 46,
59

recursive algorithm for, 70
fake-coin problems, 61ex, 103ex, 152–153,

157ex, 393ex
advanced, 400–401ex

fast Fourier transform (FFT), 234
feasible region, 115ex, 347–351
feasible solution, of optimization problem,

119, 345, 347, 432
Fibonacci, Leonardo, 80
Fibonacci heap, 337
Fibonacci numbers, 80–84, 95sum, 483–484

algorithms for, 81–83
and dynamic programming, 283–284

FIFO (first-in–first-out), 27. See also queue
first child-next sibling representation, 35
first fit (FF) algorithm, 458ex
first fit decreasing (FFD) algorithm, 458ex
first-labeled–first-scanned algorithm. See

shortest-augmenting-path algorithm
fixed-length encoding, 338
floor (��) function, 6, 75, 477
flow

in network, 362
maximum, 362, 371ex, 372ex. See also

Ford-Fulkerson method; Max-Flow
Min-Cut Theorem

value of, 362
flow-augmenting path, 363–365. See also

shortest-augmenting path algorithm
flowchart, 13
flow-conservation requirement, 361
flow network, 361

sink in, 361
source in, 361

Floyd’s algorithm, 308–311, 312ex
efficiency of, 310

Ford-Fulkerson method (augmenting path
method), 363–369, 371ex
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forest, 31, 32fig. See also tree
breadth-first search (BFS), 125–126,

128–130ex, 130sum
depth-first search (DFS), 123–125,

128–130ex, 130sum
of digraph, 139fig

representing disjoint subsets, 330
Forsythe, George E., 417
forward edge

in augmenting path, 363
in DFS forest of digraph, 139

forward substitutions, method of, 155,
480–481

free (unmatched) vertex, 373, 375, 376,
379ex

free tree, 31
fully polynomial scheme, 457
function

eventually nondecreasing, 488
order of growth of, 45–47, 51ex, 52ex,

56–58, 60ex. See also asymptotic
notations

smooth, 488

G
Gale-Shapley algorithm, 381–383, 384ex

efficiency of, 381
Galois, Evariste, 460
games. See also puzzles and puzzle-like

questions
Battleship, 107ex
card guessing, 343ex
Euclid’s game, 8ex
Icosian Game, 24ex
moldy chocolate, 167ex
Nim, 164–166

misère one-pile, 167ex
one-pile (summation game), 164–165

number guessing, 341–342, 390
picture guessing, 156ex
tic-tac-toe, 258ex, 441ex

Gauss, Karl Friedrich, 68ex, 208n, 460
Gaussian elimination, 208–217, 251sum

back substitutions in, 209, 210, 212, 216ex
determinant computation by, 215. See

also Cramer’s rule
efficiency of, 51ex, 211–212, 216ex
elementary operations in, 209

LU decomposition, produced by, 212–
214, 216ex

matrix inverse by, 214, 216ex
partial pivoting in, 211

Gauss-Jordan elimination, 217ex
gcd. See greatest common divisor
general divide-and-conquer recurrence,

171, 198sum, 487–488. See also
Master Theorem

general plan
for empirical analysis of algorithm time

efficiency, 84–85
for mathematical analysis of time

efficiency of nonrecursive
algorithms, 62

for mathematical analysis of time
efficiency of recursive algorithms,
72–73

general solution, to linear recurrence, 480,
482–485

generic term, of a sequence, 479–480
geometric algorithms, 22, 205. See also

closest-pair problem; convex-hull
problem

golden ratio (φ), 80
good-suffix shift. See Boyer–Moore

algorithm
graph, 28–31

acyclic (forest), 31, 125, 127, 129ex
bipartite, 129ex
complete, 29, 37ex, 78ex, 393ex, 394ex
connected, 31, 32, 125, 127, 137ex
connected component of, 31, 129ex
dense, 29
directed (digraph), 28, 138
of network topology, 102ex
problems, 21
representation of, 29, 254
sparse, 29, 128ex, 254
traversal of. See breadth-first search;

depth-first search
undirected, 28
weighted, 30

graph-coloring problem, 21, 25ex, 249ex,
402, 404, 407, 459ex. See also
m-coloring problem

Gray code, 147–148, 149ex
and the Tower of Hanoi, 149ex
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greatest common divisor (gcd), 4, 242
algorithms for, 4–7, 8ex, 14, 91ex

greedy technique, 315–344, 344sum
for assignment problem, 322ex
for Bachet’s problem of weights, 323ex
for bin packing, 458ex
for change-making problem, 315, 322ex
for job scheduling, 322ex
for knapsack problem, 454–457
for minimizing weighted path length. See

Huffman trees
for minimum spanning tree problem.

See Kruskal’s algorithm; Prim’s
algorithm

for other problems, 322–323ex
for single-source shortest-paths problem.

See Dijkstra’s algorithm
for TSP, 444–446
optimality proofs for, 316–317

H
Hall’s Marriage Theorem, 379ex
halting problem, 403
Hamilton, Sir William Rowan, 24ex, 116
Hamiltonian circuit, 24ex, 116, 120ex, 403,

404, 406–407, 409ex, 421sum
backtracking for, 426–427, 431ex
exhaustive search for, 120ex
shortest. See TSP

Hamiltonian path, by DNA computing, 474
Hamming, Richard, 114ex
Hamming distance, 114ex
Harel, David, 1
hash address, 269
hash function, 269–270, 274–275ex
hashing, 269–275, 280sum

closed (open addressing), 272–274,
274–275ex

double, 273–274
linear probing, 272–273

collision in, 270. See also birthday
paradox

extendible, 274
open (separate chaining), 270–271,

274ex, 275ex
vs. balanced search trees, 274

hash table, 269
load factor of, 271, 273
rehashing of, 274

head, of directed edge, 28
header, of linked list, 27
heap, 226–234, 248ex, 250sum. See also

min-heap; priority queue
array representation of, 228, 233ex
bottom-up construction of, 228–230,

233ex
deletion from, 230–231, 233ex
insertion into, 230
parental dominance (heap property),

227
properties of, 228
shape property of, 227
top-down construction of, 230, 233ex

Heap’s algorithm for permutations, 148–
149ex

heapsort, 231–232, 233–234ex, 250sum
efficiency of, 181, 232

height
of AVL tree, 223
of binary tree, 34, 183, 399ex
of B-tree, 278
of heap, 228
of tree, 33

Held-Karp bound, 452–453
heuristic, 442
Hoare, C.A.R., 176
Hopcroft, John, 124n, 223, 377
Horner’s rule, 234–236, 239ex, 240ex,

251sum
and binary exponentiation, 236–237
efficiency of, 236
for binary to decimal conversion, 239ex
for synthetic division, 236, 239–240ex

Horspool’s algorithm, 259–262, 267–268ex,
280sum

efficiency of, 262
How to Solve It, 18ex
Huffman codes, 338–341, 342ex, 343ex,

344sum
compression ratio of, 341
dynamic, 341

Huffman trees, 338–343, 344sum
Hungarian method, 120

I
Icosian Game, 24ex
ill-conditioned problem, 415–416, 420ex
incremental approach, 131
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independent set, 410ex, 458ex
index

in array, 26
for data set, 276

initial condition, 71, 479–480
inorder traversal, 184, 185, 186ex
in-place sorting algorithm, 20, 23ex, 174,

180–181, 232
input enhancement, 253–268, 280sum

for ancestry problem, 258ex
for sorting by counting, 254–258
for string matching, 258–268

input size, 43–44
insertion sort, 134–136, 137ex, 167sum, 180

efficiency of, 135–136
instability, of numerical algorithm, 415
instance, of a problem, 11
instance simplification, 201–223, 250sum

AVL trees, 218–223, 225–226ex,
250sum

Gaussian elimination, 208–217, 251sum
Gauss-Jordan elimination, 217ex
presorting, 202–208, 429–430

integer linear programming, 245, 246,
248–249ex, 251sum, 404

interior-point methods, 359
internal node, 183, 184
internal path length, 186ex
interpolation

in data analysis, 88
polynomial, 240ex

interpolation search, 152, 161–163, 166ex.
See also method of false position

efficiency of, 163
intractable problem, 401, 403, 409ex,

420sum. See also NP-complete;
NP-hard

inverse, of matrix, 214, 216ex
inversion, in array, 138ex, 175ex
iterative improvement, 345–385

for linear programming problem. See
simplex method

for maximum-flow problem. See Ford-
Fulkerson method

for maximum matching problem, 372–
378

for stable marriage problem. See Gale-
Shapley algorithm

J
Java, 37, 83ex, 85, 92, 189
Johnson-Trotter algorithm, 145, 148ex
Josephus problem, 154–155, 157ex

K
Kahan, William, 419
Kantorovich, L. V., 346
Karatsuba, Anatoly, 189
Karmarkar’s algorithm, 245, 359
Karp, Richard M., 365, 370, 372ex, 377,

403n. See also Held-Karp bound
Kelvin, Lord William Thomson, 387
key, in a record, 19, 269
Khachian, L. G., 358
knapsack problem, 116–119, 404

approximation schemes for, 456–457,
469sum

branch-and-bound for, 436–438, 440ex,
441ex

continuous (fractional), 245
decision version of, 410ex
discrete (0–1), 246
dynamic programming for, 292–297
exhaustive search for, 117, 118, 146
greedy algorithms for, 469sum

for continuous version, 455–456
for discrete version, 454–455, 458ex

linear programming for, 245–246, 360ex
Knuth, Donald E., 2, 234, 273n, 391, 430
Knuth-Morris-Pratt algorithm, 259
Koopmans, T. C., 346
Kruskal, Joseph, 325
Kruskal’s algorithm, 325–327, 331–333ex,

344sum
efficiency of, 327

L
Landis, E. M., 218
largest and smallest elements, 60ex, 174ex,

226ex
lazy deletion, 273
lcm. See least common multiple
leaf, in rooted tree, 33. See also external

node
algorithm for counting, 185ex

least common multiple (lcm), 241–242,
248ex



Index 557

left-to-right binary exponentiation, 237,
240ex

Lempel-Ziv algorithms, 341
level lines, 348
Levin, Leonid, 407, 409
lexicographic order

of generating permutations, 145–146,
148ex

of string ordering, 26
L’Hôpital’s rule, 57
LIFO (last-in–first-out), 27. See also stack
limitations of algorithm power, 387–421

coping with, 423–469
linear

algorithm, example of, 59, 106, 128, 161,
163, 184, 197, 236, 262, 267

function and basic efficiency class, 46, 47,
51–52ex, 59, 88, 89fig

linear congruential method, 87
linearithmic. See n-log-n
linear probing, 272–273
linear programming problem, 115ex, 244–

246, 251sum. See also Extreme Point
Theorem; simplex method

dual, 360–361ex
feasible region of, 115ex, 347

extreme point of, 115ex, 350. See also
basic feasible solution

feasible solution to, 347
basic, 353

geometric interpretation of, 347–351
infeasible, 349
integer. See integer linear programming
objective function of, 347
optimal solution to, 347
primal, 360–361ex
standard form of, 351–352
unbounded, 349

linear recurrence with constant coefficients,
482–485

application to Fibonacci numbers,
483–484

characteristic equation for, 482–483, 485
homogeneous, 80, 482
inhomogeneous, 482
kth degree, 485

linked list, 26, 39sum
doubly linked, 26

nodes in, 26
pointers in, 26
singly linked, 26

Lin-Kernighan algorithm, 450, 453, 469sum
list, 27–28. See also array; queue; stack

array vs. linked list implementation of,
26–27, 103ex, 137ex, 156ex

linked. See linked list
presorting of. See presorting

little-oh notation, 57
live (promising) node, 434
load factor, in hashing, 271, 273
local search heuristics, for TSP, 449–450,

453, 469sum
logarithmic

algorithm, example of, 66, 83, 133,
150–152, 156–157ex, 163

function and basic efficiency class, 45–46,
57, 59, 88, 89fig

Lomuto partitioning. See partitioning (of
array), by one-directional scan

longest path, 284, 292ex
loop, in a graph, 29, 37ex
lower-bound arguments, 388–394

adversary, 390–391, 394ex, 420sum
information-theoretic, 390, 393ex,

420sum. See also decision trees
problem reduction, 391–393, 394ex,

420sum
trivial lower bounds, 389–390, 393ex,

420sum
lower bounds, 387–394, 420sum. See also

lower-bound arguments
for element uniqueness, 392
for Euclidean minimum spanning tree,

392
for graph connectivity, 394ex
for integer multiplication, 392
for matrix multiplication, 191, 389
for median determination, 389, 399ex
for merging, 391, 394ex
for polynomial evaluation, 389
for searching sorted array, 397–399,

400ex, 420sum
for sorting, 394ex, 395–397, 420sum
tight, 388–389, 392, 393ex, 394ex, 400ex

lower hull, 195
LU decomposition, 212–214, 216ex
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M
Manhattan distance, 114ex, 249ex, 317
mantissa, 414
map coloring, 25ex
marriage matching, 380. See also stable

marriage problem
blocking pair in, 381, 383ex
stable, 381–382, 383ex, 384ex

man-optimal, 383, 384ex
unstable, 381, 383ex

Master Theorem, 171, 198sum, 487–491
application of, 173, 175ex, 178, 189, 191,

195, 487
matching, in a graph, 372

in bipartite graph, 372–380, 385sum
maximum (maximum-cardinality), 372
maximum-weight, 377
perfect, 375. See also marriage matching

mate, of vertex in matching, 373
mathematical analysis of algorithm

efficiency. See analysis of algorithm
efficiency, mathematical

mathematical modeling, 202
matrix chain multiplication, 303ex
matrix multiplication, 64

brute-force algorithm for, 64–66, 68ex
Coopersmith-Winograd algorithm, 191
lower bound for, 191
matroid, 317
Pan’s algorithm, 192ex
Strassen’s algorithm, 189–191, 192ex,

199sum
Max-Flow Min-Cut Theorem, 369–370. See

also Ford-Fulkerson method
maximization problem, 243, 442. See

also knapsack problem; linear
programming problem; maximum-
flow problem; maximum matching
problem

maximum-capacity-augmenting-path
algorithm, 372ex

maximum-flow problem, 361–370, 371ex,
372ex, 385sum

maximum independent set, 458ex
maximum matching problem, in bipartite

graph, 372–377, 378ex, 379ex,
385sum

maximum point, of a point set, 207ex
maximum spanning tree, 332ex

maze
generating of, 333ex
traversal of, 129ex

m-coloring problem, 402, 404, 431ex
median, computing of. See selection

problem
median-of-three partitioning, 180,

181ex
memory functions. See dynamic

programming, memory functions
mergesort, 172–174, 175ex, 180, 198–

199sum
bottom-up version, 175ex
efficiency of, 173–174, 396
multiway, 174

merging, 172, 173
lower bound for, 391, 394ex

method of backward substitutions, 72,
74, 75, 80, 188, 481–482, 486, 487–
488. See also method of forward
substitutions; recurrence

method of false position, 464, 465,
466, 468ex, 469sum. See also
interpolation search

method of forward substitutions, 155, 480–
481. See also method of backward
substitutions; recurrence

middle-school procedure, for computing
gcd, 5–6, 7, 14

Miller-Rabin algorithm, 472–473. See also
primality testing

min-heap, 227n, 248ex, 320, 322, 324ex,
337. See also heap; priority queue

minimal-change requirement, 144–145
minimization problem, 243–244. See

also assignment problem; bin-
packing problem; change-making
problem; closest-pair problem;
graph-coloring problem; linear
programming; minimum-cut
problem; minimum spanning tree
problem; minimum vertex cover;
shortest paths problem; TSP

minimum-edge path, 127
minimum spanning forest, 332ex
minimum spanning tree, 318, 324ex, 332ex,

338ex, 402
algorithms for. See Kruskal’s algorithm;

Prim’s algorithm
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algorithms for TSP, based on, 446–449,
458ex, 469sum

Euclidean, 392
uniqueness of, 324ex

minimum vertex cover, 458ex
mobile element, in permutation, 145
mode, 203–204
modular arithmetic, 477
multifragment heuristic, for TSP, 445–446,

453, 469sum
multiplication à la russe. See Russian

peasant multiplication
multiplication of large integers, 187–189,

191ex, 199sum, 392
in object-oriented languages, 189

multiset, 36, 226

N
nearest-neighbor algorithm, 444–445, 446,

449, 450, 453, 457ex, 458ex
network. See flow network
Newton, Isaac, 208n, 234
Newton’s (Newton-Raphson) method

for nonlinear equations, 464–467, 468ex,
469sum

for square roots, 416–417, 420ex
Nim, 164–166, 167ex

misère version of, 167ex
nim sum, 165–166
one-pile version of (summation game),

164–165
n-log-n

algorithm, example of, 59, 173–174,
175ex, 178, 180, 182ex, 195, 203–
205, 205–207ex. See also heapsort;
presorting; mergesort; quicksort

function and basic efficiency class, 46, 59,
88–89

n-node, 276
node

in linked list, 26–27
in state-space tree

live, 434, 440ex
nonpromising, 425, 433
promising, 424

in a tree. See vertex, in rooted tree
nondeterministic algorithm, 404–405
nonlinear equations, solving of, 459–468,

469sum

NP (nondeterministic polynomial), 405,
421sum. See also NP-complete

NP-complete, 406–409, 411ex, 421sum. See
also NP-hard

NP-hard, 117, 441
n-queens problem, 121ex, 425–426, 429,

430–431ex
numerical algorithms, 412–420, 459–468.

See also Gaussian elimination;
Horner’s rule

numerical analysis, 412, 421sum. See also
numerical algorithms

numerical problems, 22–23. See also
numerical algorithms

O
objective function, 347, 432
objective row, in simplex tableau,

354
open addressing. See hashing, closed
open hashing (separate chaining). See

hashing, open
operations research, 108, 122, 141, 308,

403
optimal binary search tree. See binary

search tree, optimal
optimal solution, 347, 432
optimization problem, 432. See also max-

imization problem; minimization
problem

order of growth, 45–47, 52ex. See also
asymptotic notations; Master
Theorem; smoothness rule

using limits, 57–58, 60ex
order statistic, 158
overflow, 414

P
P (polynomial time), 402, 405, 408, 410ex,

421sum
pairwise summation, 170n
Pan’s algorithm, 192ex
parent

in heap, 228
in rooted tree, 33

parental dominance, in heaps, 227
partial pivoting, 211
particular solution, to recurrence, 480,

484–485
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partitioning, of array, 158. See also Dutch
national flag problem; median-of-
three; quickselect; quicksort

by one-directional scan (Lomuto
partitioning), 158–159, 161

by two-directional scan, 176–180, 181ex
partition problem, 121ex, 404, 405, 410ex
path, 30. See also cycle

augmenting a matching, 373–374. See
also maximum cardinality matching

counting, 242–243
directed, 31
flow-augmenting, 363. See also

augmenting-path method
length of, 30
longest, in a dag, 292ex
minimum-edge, 127
shortest, 22, 198ex, 291ex. See also

shortest paths problem
simple, 30

path compression, 331
pattern, in string matching, 105, 259
performance ratio, 443, 445, 446, 448, 455,

458ex, 459ex
permutations, 59, 116, 119–120, 389, 431ex

generation of, 144–146, 148ex
PERT (Program Evaluation and Review

Technique), 141
pivot

in Gaussian elimination, 209
in quickselect, 158, 161
in quicksort, 177, 180
in simplex method, 355

column, 355, 357
row, 355, 357

pointer
in linked list, 26–27
in tree representation, 35

Pólya, George, 18ex
polygon, 22

convex, 22, 110, 111, 112fig, 198ex. See
also convex hull

simple, 198ex, 206ex
Voronoi, 198ex

polynomial
evaluation of, 43, 389. See also

exponentiation
by brute force, 102ex, 239ex

by Horner’s rule, 234–236, 239ex
interpolation, 240ex
representation of, 234, 240ex
sparse, 254, 258ex

polynomial order of growth, 60ex
polynomial-time algorithm, 117, 120, 245,

358–359, 410ex. See also P
post office location problem

one dimensional, 113ex
two dimensional, 249ex

postorder traversal, 184, 185, 186ex
power set, 137ex, 146
precision

double, 414, 419
extended, 414
single, 414

preconditioning, 253n
prefix-free code, 339. See also Huffman

codes
preflow, 370
preorder traversal, 184, 185, 186ex
preprocessing, 253n
presorting, 201, 202–208, 427. See also

greedy technique
prestructuring, 253–254. See also B-tree;

hashing
primality testing, 408, 472. See also

composite number problem
Prim’s algorithm, 318–322, 324ex, 332ex,

333ex, 344sum
efficiency of, 320, 322

principle of optimality, 284. See also
dynamic programming

priority, 226
priority queue, 27–28, 37, 233ex

heap implementation of, 226–231
in Dijkstra’s algorithm, 335, 337
in Prim’s algorithm, 320, 322, 324ex
in sorting. See heapsort

polynomial interpolation, 240ex
problem

algorithmic solving of, 9–18
decision, 402. See also halting problem;

P; NP; NP-complete
instance of, 9
intractable, 401, 409ex
tractable, 401, 409ex
types of, 18–23
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problem of the roommates, 384ex
problem reduction (design technique), 201,

202, 240–249, 250sum
for computing the least common

multiple, 241–242, 248ex
for counting paths, 242–243, 248ex
mutual reducibility of optimization

problems, 243–244, 248ex
other examples, 241, 248ex, 249ex
to a graph problem, 21, 25ex, 246–247,

249ex
to linear programming, 244–246, 249ex

problem reduction (for lower bounds). See
lower-bound arguments, problem
reduction

profiling, 86
Programming Pearls, 15n
pseudocode, 12–13
pseudorandom numbers, 87
puzzles and puzzle-like questions. See also

games
advanced fake-coin problem, 400–401ex
alternating disks, 103ex, 393ex
alternating glasses, 136ex
anagram checking, 38ex
anagram detection, 208ex
averaging down, 323ex
Bachet’s problem of weights, 323ex,

324ex
celebrity problem, 79ex
chocolate bar puzzle, 186ex
climbing stairs, 83ex
creating decagons, 198ex
crossing a bridge at night. See New World

puzzle
cutting a stick, 156ex
dining problem, 372ex
dissecting a Fibonacci rectangle, 84ex
domino puzzle, 380ex
door in a wall, 61ex
double-n dominoes, 249ex
fair attraction, 149ex
fake-coin problem, 152–153, 157ex
famous alphametic, 121–122ex
ferrying soldiers, 136ex
Fibonacci’s rabbits problem, 83ex
flipping pancakes, 167ex
frying hamburgers, 79ex

gadget testing, 106ex
glove selection, 51ex
gobbling goat, 468ex
Gray code and the Tower of Hanoi,

149ex
invention of chess, 52ex
Jack Straws, 312ex
jealous husbands, 249ex
jigsaw puzzle, 401ex
King Arthur, 411ex
Königsberg bridges, 24ex
least distance sorting, 258ex
lighter or heavier? 61ex
lights out, 217ex
locker doors, 8ex, 68ex
magic squares, 121ex
marking cells, 136ex
mental arithmetic, 69ex
missing socks, 51ex
New World puzzle, 17ex, 323ex
n-queens problem, 121ex, 425–426, 429,

431ex
number placement, 207ex, 394ex
nuts and bolts, 182ex
odd pie fight, 114ex
Old World puzzle, 17ex, 247
page numbering, 70ex
puzzle pegs, 431ex
restricted Tower of Hanoi, 77ex
rumor spreading, 323ex
shortest path around, 198ex
shortest path counting, 291ex
shortest path modeling, 338ex
spaghetti sort, 234ex
spider’s web, 143ex
stack of fake coins, 103ex
Steiner tree, 333ex
team ordering, 137ex
tetromino tilings, 102–103ex
three jugs, 130ex
Tower of Hanoi, 73–75, 77ex, 94, 149ex,

393ex
tromino puzzle, 175ex
von Neumann’s neighborhood, 69ex,

79ex
wolf, goat, and cabbage. See Old World

puzzle
word find, 107ex
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Q
quadratic

algorithm, example of, 63–64, 99–100,
100–101, 108–109, 128, 134–135,
159–161, 178–180

function and basic efficiency class, 46,
52–53, 58, 59, 88

quadratic equation, solving on a computer,
416–419, 421sum

quantum computing, 473–474
queue, 27, 37ex

front of, 27
rear of, 27
using of, 125–127, 366–368, 376–378, 383

quick find, 328–330
quickhull, 195–197, 198ex. See also convex

hull
efficiency of, 197, 198ex

quickselect, 160–161, 166ex
efficiency of, 161

quicksort, 176–182, 199sum
efficiency of, 178–180
randomized, 180

quick union, 330–331

R
radix sorts, 203n
random access machine (RAM), 10
randomized algorithm, 180, 472–473
random numbers. See pseudorandom

numbers
range, of a set, 60ex, 226ex, 257
record (data), 19, 108, 206ex, 269, 276. See

also dictionary
recurrence, 71, 479–491. See also analysis of

algorithm efficiency, mathematical,
of recursive algorithms

recurrence equation. See recurrence
recurrence relation. See recurrence
recursion tree, 74–75, 82, 179fig
red-black trees, 218
regula falsi. See method of false position
representation change, 250sum. See also

binary exponentiation; breadth-first
search, forest; depth-first search,
forest; disjoint subsets; Horner’s
rule

bit shift algorithm for Josephus problem,
155, 157ex

heaps by arrays, 228
sets by search trees. See balanced search

trees; binary search tree
subsets by bit strings, 36, 146–148, 149ex

representative, of disjoint subset, 318
right-to-left binary exponentiation, 238–

239, 240ex
root, of a rooted tree, 32
rooted tree, 32
rotation, 218, 219

double left-right (LR), 220, 221fig
double right-left (RL), 221, 226ex
single left (L), 219, 226ex
single right (R), 219, 221fig

round-off error, 22–23, 170n, 211, 414,
415, 417, 461. See also instability;
subtractive cancellation

RSA algorithm, 408
Ruffini, Paolo, 460
running time, 15, 85–86. See also analysis

of algorithm efficiency
Russian peasant multiplication, 153–154,

157ex

S
Sahni, S., 456
scatterplot, 87–89, 90ex, 91, 93fig
searching, 20–21, 27. See also dictionary;

hashing; priority queue; search
trees; sequential search; string
matching

and presorting, 201, 202ex
in sorted array. See binary search;

interpolation search; lower bounds,
for searching sorted array

in sorted matrix, 167ex
search key, 20. See also hashing
search trees. See balanced search trees;

binary search tree
Sedgewick, R., 163, 180
selection problem, 158–161
selection sort, 98–100, 103ex, 138ex

efficiency of, 99–100
sentinel

in heap’s array representation, 228
in insertion sort, 135, 137ex
in quicksort, 178, 181ex
in sequential search, 104, 106ex

separate chaining. See hashing, open
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sequence, 479
sequential search, 104, 130sum

efficiency of, 47, 48–49, 50ex, 58ex,
106ex, 156ex, 205

set, 35–36
convex, 110–111. See also convex hull
intersection, 36, 205ex, 206ex
universal, 36

set union problem, 36. See also disjoint
subsets

Shell, D. L., 136
shellsort, 136, 138ex
shift table. See Boyer–Moore algorithm;

Horspool’s algorithm
Shor, Peter, 473
shortest-augmenting-path algorithm,

365–368
efficiency of, 370

shortest-paths problem, 21, 22, 30
all-pairs, 308. See also Floyd’s algorithm
minimum-edge, 127
single-destination, 337ex
single-pair, 327ex, 338ex
single-source, 333, 337ex, 338ex. See also

Dijkstra’s algorithm
for dags, 338ex

siblings, of a tree vertex, 34
sieve of Eratosthenes, 6–7, 12, 50ex,

91ex
significant digits, 414, 419ex
simple path, 30, 32
simplex method, 242, 346–360, 385sum

θ -ratio, 355
basic feasible solution, 353
basic solution, 352
basic variable, 352
Bland’s rule, 357
departing variable, 355
efficiency of, 358
entering variable, 355
nonbasic variable, 352
objective row, 354
pivot column, 355
pivoting, 355–356
pivot row, 355
simplex tableau, 353
summary of, 356–357
two-phase, 358

single-source shortest-paths problem. See

shortest-paths problem, single-
source

singular matrix, 214
sink, in flow network, 361, 371ex
size, of algorithm’s input, 43–44
smooth function, 488–489. See also

smoothness rule
smoothness rule, 75, 489–490
sorting, 19–20, 43, 44, 51ex, 121ex, 167ex,

233ex, 258ex. See also bubble
sort; comparison counting sort;
distribution counting sort; heapsort;
insertion sort; lower bounds, for;
mergesort; presorting; quicksort;
radix sorts; selection sort; shellsort;
topological sorting

in-place, 20, 23ex
stable, 20, 23ex, 103ex, 138ex, 175ex,

181ex, 233ex
Sorting Out Sorting, 91–92
source

for single-source shortest-paths problem,
333

in digraph, 141, 142ex
in flow network, 361, 371ex

source-removal algorithm, 141, 142ex
efficiency of, 142ex

space and time trade-offs, 253–281, 280sum
space complexity. See space efficiency
space efficiency, 42–43, 50
spanning tree, 318. See also breadth-first

search, forest; depth-first search,
forest; minimum spanning tree

splay trees, 218
square root, computing of, 416–417, 420ex,

465
squashed order, 147, 149ex
stable marriage problem, 380–384, 385sum
stack, 27, 37ex

in recursive algorithms, 72, 174, 180–181
of depth-first search, 122–123, 128ex, 140
top of, 27

state-space graph, 246–247. See also state-
space tree

state-space tree, 423–424. See also
backtracking; branch-and-bound

size estimation of, 430, 431ex
Steiner tree, 333ex
Stirling’s formula, 57, 58
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straight insertion sort. See insertion sort
Strassen’s matrix multiplication, 189–191,

192ex, 199sum
efficiency of, 190–191

string, 20, 26, 268ex
binary (bit), 26. See also bit string
for gene representation, 20, 267ex
Hamming distance, 114ex

string matching, 21. See also Boyer-Moore
algorithm; brute force, for string
matching; Horspool’s algorithm

string processing, 20–21
strongly connected component, 142–143ex
subsets, 36, 59. See also disjoint subsets;

knapsack problem; partition
problem

generating of, 146–148, 149ex
subset-sum problem, 427–428, 431ex
subtractive cancellation, 415, 417–419,

421sum
subtree, 33

left, in binary tree, 33
right, in binary tree, 33

summation formulas and manipulation
rules, 62–63, 476

synthetic division, 236, 240ex, 241
system of distinct representatives, 379ex
system of linear equations, 208, 214,

215–216, 217ex. See also Gaussian
elimination; simplex method

ill-conditioned, 408, 412ex

T
Tarjan, Robert, 49, 124n
Taylor polynomial, 412, 413, 419ex
ternary search, 156ex
text, in string matching, 105, 259
The Art of Computer Programming, 273n
tick, 85n
tic-tac-toe, 258ex
time (UNIX command), 85
time complexity. See time efficiency
time efficiency, 42–45, 50, 94–95sum. See

also analysis of algorithm efficiency
top, of a stack, 27
top-down 2–3-4 tree, 279ex
topological sorting, 138–143, 168sum

DFS-based algorithm, 140, 142ex
source-removal algorithm, 141, 142ex

tournament tree, 400ex
Tower of Hanoi. See puzzles and puzzle-like

questions, Tower of Hanoi
tractable problem, 401–402, 409ex. See also

P
transform-and-conquer, 201–251, 250sum
transitive closure, 304–305. See also

Warshall’s algorithm
traveling salesman problem (TSP), 21,

25ex, 86, 403, 441
Euclidean instance of, 446
solved approximately, 443–453, 457–

458ex
empirical results, 453
limits on accuracy, 443–444

solved exactly, 452. See also exhaustive
search, for TSP; branch-and-bound,
for TSP

tree, 31–32
free, 31
height of, 33, 34

computing of, 182–183, 184, 185ex
ordered, 33–35
rooted, 32–33

tree edge
in BFS forest, 125, 127
in DFS forest, 123, 124, 125, 128ex,

139
triangle inequality, 114ex, 446
truncation error, 412–413, 419ex, 420ex
TSP. See traveling salesman problem
Turing, Alan, 403
Turing award, 124n, 176n, 403n
twice-around-the-tree algorithm, 446–448,

453n, 458ex, 469sum

U
undecidable problem, 402. See also halting

problem
underflow, 414
undirected graph, 28–29. See also graph
union by rank, 331
union by size, 330, 331, 332ex
union-find algorithms. See disjoint subsets
universal set, 36
upper hull, 195–196
upper-triangular matrix, 208–210, 214, 215.

See also LU decomposition
user time, 86
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V
variable-length encoding, 339
variable-size-decrease, 133, 157–167,

168sum
for gcd. See Euclid’s algorithm
for searching. See binary tree search;

interpolation search
for selection problem. See quickselect
for solving equations. See method of

false position
for the game of Nim, 164–166, 167ex

variance
in Huffman codes, 342ex
two formulas for, 67ex

vertex, in a graph, 28
adjacent, 28
free (unmatched), 373
incident to an edge, 28
isolated, 37ex
matched, 364
unmatched (free), 373

vertex, in rooted tree
ancestors of, 33

proper, 33
child of, 33

depth of, 33
descendants of, 33

proper, 33
external, 183
internal, 183
leaf, 33
parent of, 33
root, 32
siblings of, 33

vertex cover, 410ex, 458ex
virtual initialization, 258ex
von Neumann, John, 10
von Neumann architecture, 10
von Neumann neighborhood, 69ex, 79ex
Voronoi diagram, 198ex
Voronoi polygon, 198ex

W
Warshall’s algorithm, 304–308, 311ex,

312ex, 313sum
efficiency of, 307–308

weight (cost), of graph’s edge, 30
weight (cost) matrix, 30
weighted graph, 30
worst-case efficiency, 47–48
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